
Вклад Уильяма Росса Эшби в становление теории систем

Формирование теории систем происходило в процессе обобщения знаний предметных отраслей наук и синтеза общих закономерностей образования, функционирования и поведения систем в природе, обществе и технике.

Ряд принципов общей теории систем принято связывать с именем психолога, кибернетика, изобретателя гомеостата (самоорганизующейся системы) Уильяма Росса Эшби и его последователей, авторов различных кибернетических теорий.

Уильям Росс Эшби

Уильям Росс Эшби — английский психиатр, специалист по кибернетике, пионер в исследовании сложных систем.

Уильям Росс Эшби

Окончил Кембриджский университет. С 1930 работал психиатром. С 1947 по 1959 годы Эшби был руководителем исследований в госпитале en:Barnwood House Hospital в Глостере, Англия. В 1959—1960 годах — директор Берденского нейрологического института в Бристоле. С 1960 — профессор кибернетики и психиатрии Иллинойсского университета.

В 1971 году стал членом Королевского колледжа психиатрии Эшби принадлежит изобретение гомеостата (1948), введение понятия самоорганизации.

Уильям Росс Эшби сформулировал следующие законы:

- □ Закон необходимого разнообразия
 - □ Закон опыта

«Закон необходимого разнообразия»

Разнообразие (энтропию) управляемого можно понизить не более чем на величину количества информации в управляющей системе об управляемом, которое равно разнообразию (энтропии) управления за вычетом потери информации от неоднозначного управления.

«Закон необходимого разнообразия»

Разберем этот закон на простом примере, где лицо, принимающее сложное (неочевидное) решение - N, проблема, требующая решение – D. В этом случае разнообразие вариантов возможных решений можно оценить энтропией Э_D. Но лицо, принимающее решение вряд ли обладает информацией обо всех приемах и методах решения. Кроме того, он может быть скован возможностями, ресурсами, способностями. Поэтому «разнообразие» вариантов решения N может быть оценено как $Э_N$ и значение этого показателя энтропии будет меньше $Э_D$. Для успешного решения проблемы N должен стремиться к уменьшению разности разнообразия, т. е. $\Delta Э = Э_D - Э_N$ стремится к минимуму. Это возможно если управляющая система N будет иметь большее, или равное разнообразие (свободу выбора), чем объект управления –

«Закон необходимого разнообразия»

Весьма образная формулировка этого принципа фиксирует, что «только разнообразие может уничтожить разнообразие». Очевидно, что рост разнообразия элементов систем как целых может приводить как к повышению устойчивости (за счёт формирования обилия межэлементных связей и обусловливаемых ими компенсаторных эффектов), так и к её снижению (связи могут и не носить межэлементного характера в случае отсутствия совместимости или слабой механизации, напр., и приводить к диверсификации);

«Закон опыта»

Данные, которые связаны с изменением параметра, имеют тренд к разрушению и замещению данных о начальном состоянии системы.

«Закон опыта»

Общесистемная формулировка закона, не связывающая его действие с понятием информации, утверждает, что постоянное «единообразное изменение входов некоторого множества преобразователей имеет тенденцию уменьшать разнообразие этого множества» — в виде множества преобразователей может выступать как реальное множество элементов, где воздействия на вход синхронизированы, так и один элемент, воздействия на который рассредоточены в диахроническом горизонте (если линия его поведения обнаруживает тенденцию возврата к исходному состоянию, и т.с. он описывается как множество).

При этом вторичное, дополнительное «изменение значения параметра делает возможным уменьшение разнообразия до нового, более низкого уровня»; более того: сокращение разнообразия при каждом изменении обнаруживает прямую зависимость от длины цепи изменений значений входного параметра.