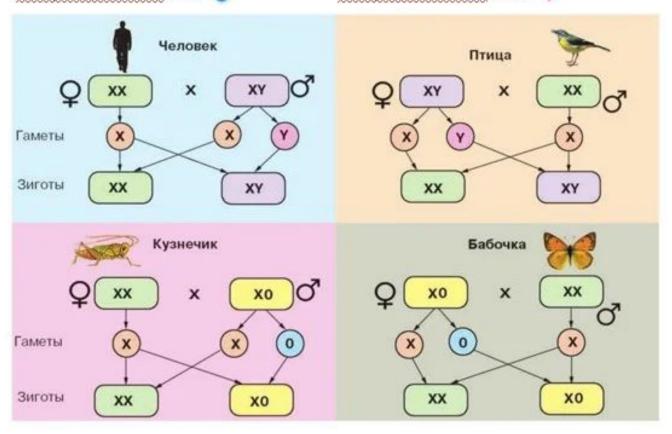


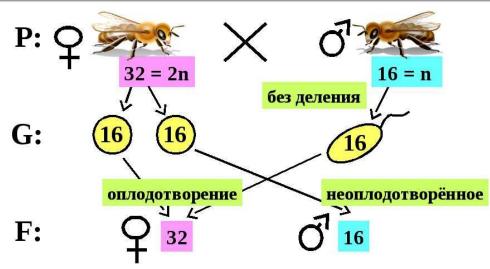
Кариотип - совокупность признаков (число, размеры, форма и т.д.) полного набора хромосом, присущая клеткам данного биологического вида (*видовой кариотип*), данного организма (*индивидуальный кариотип*).

Идиограмма - графическое изображение кариотипа, то есть, набора хромосом при расположении их по группам в зависимости от формы и величины

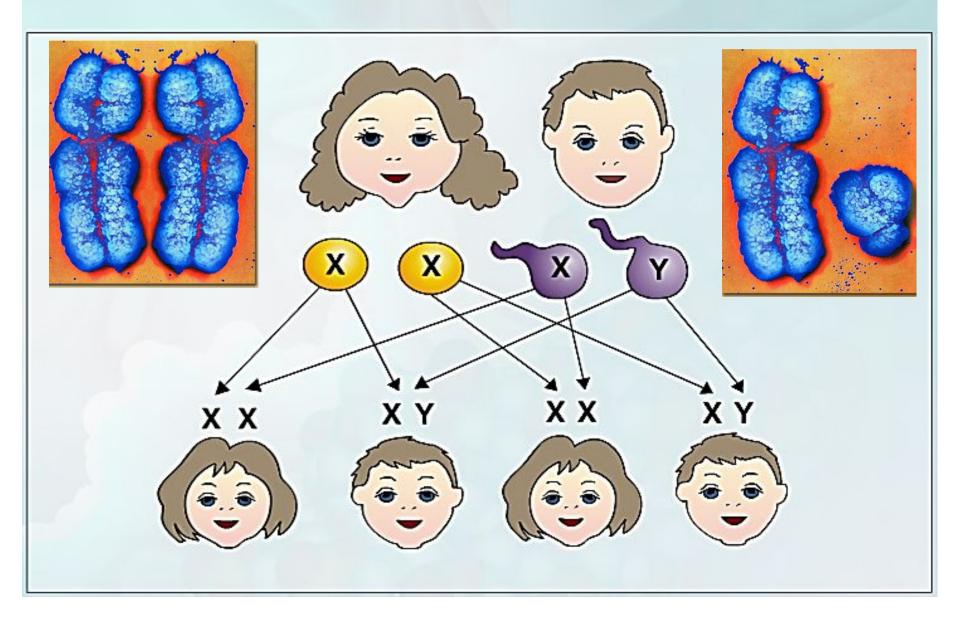


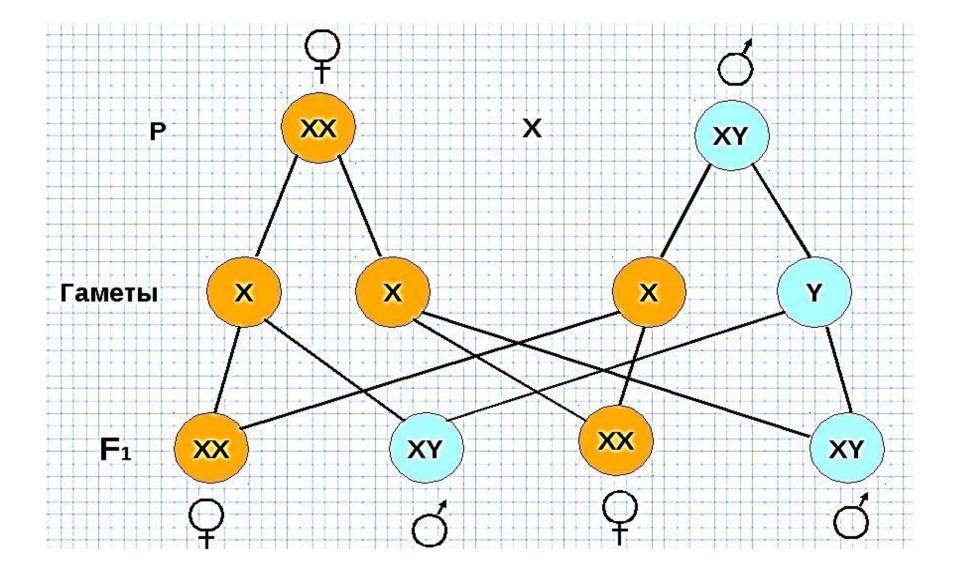
Пол, формирующий гаметы, одинаковые по половым хромосомам, называют гомогаметным, а неодинаковые – гетерогаметным.

Гомогаметный пол ОТ Гетерогаметный пол Q

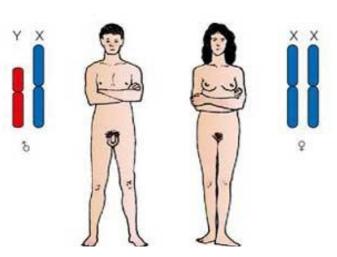


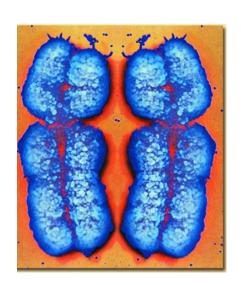
- ниже 30
 градусов самки;
- при промежуточ

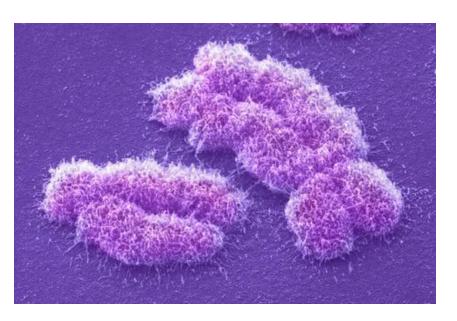

Определение пола у пчёл.



XXXXXXXXX — самка


XYXYXYXYXY – самец.

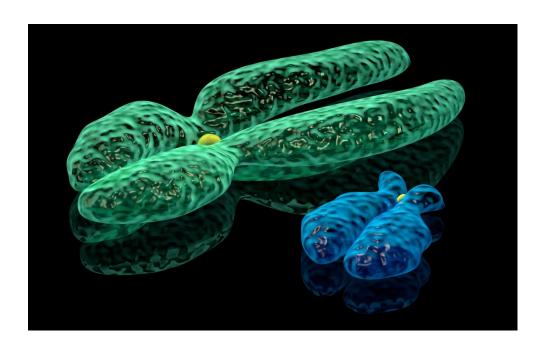


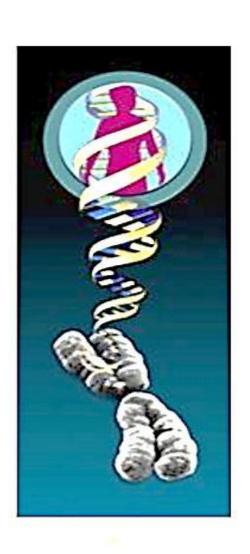


ХиУхромосомы

Х и Z-хромосомы крупные и богатые генами, они подвержены рекомбинации (перераспределение генетического материала).

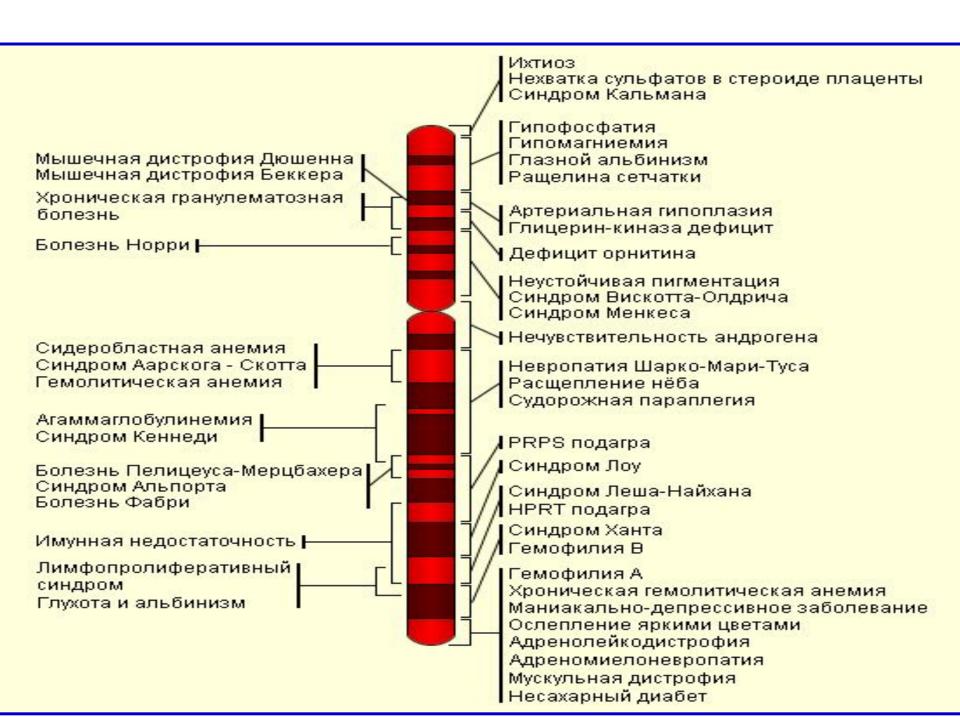
Хромосомы Y или W мелкие и содержат малое количество генов.


У **Y (W)**-хромосом, появились участки, которые стали неподверженными кроссинговеру, т. е. в этих частичках не происходит обмен (рекомбинация) генов. Со временем эти участки расширялись, накапливали мутации, что привело к дегенерации и инертности хромосомы в целом.


ХиУ хромосомы

У - хромосома

У мужчин в Y-хромосоме не только заложена программа развития пола по мужскому типу у зародыша, но и заданы функции работы яичек. У взрослых мужчин, она руководит синтезом спермы и созданием сперматозоидов заданной формы — с головками и хвостиками, руководит работой эндокринных желез, выделяющих половые гормоны, управляет либидо.



Наследование признаков, сцепленных с полом

Признаки, гены которых локализованы в половых хромосомах, называются признаками, сцепленными с полом.

Если признак связан с X-хромосомой, то у гетерозиготного пола (мужчин) он будет проявляться даже в рецессивном состоянии. Xdy XDY XDXd XdXd

Y- хромосома человека является наименьшей по размеру из 24 хромосом человека и

содержит около 2-3% ДНК гаплоидного генома.

В У-хромосоме выделяют несколько областей:

-псевдоаутосомные области (PARs);

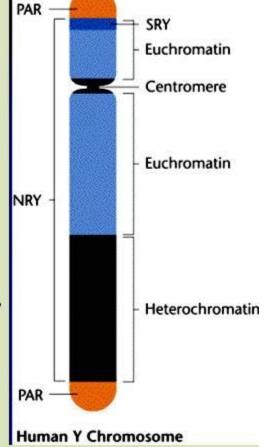
- эухроматиновую область короткого плеча (Yp11);

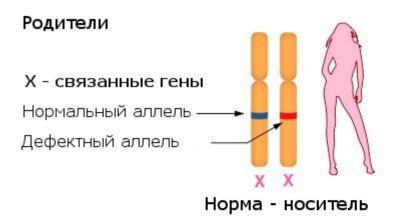
- - эухроматиновую область проксимальной части длинного

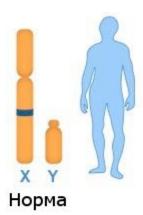
плеча (Yq 11);

гетерохроматиновую область дистальной части длинного

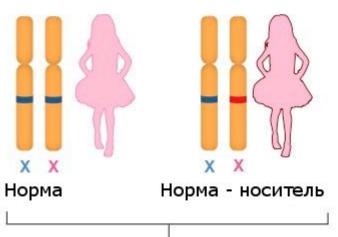
плеча (Yq12);

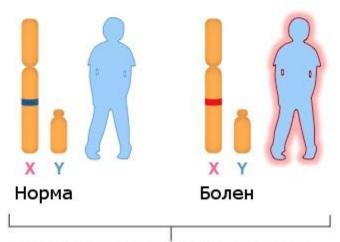

область прицентромерного гетерохроматина.


При анализе Ү-хромосомы выяснилось, что гипотетический


фактор, отвечающий за формирование пола, существует в

действительности- это ген SRY/Sry (sex region of Y-chromosome),


локализопання в кромосомы.



Вероятное потомство

Наследуют аллели от обоих родителей, рецессивный признак замаскирован (носитель)

Наследуют аллели только от матери, признак **не может** быть замаскирован

Особенности передачи доминантных болезней, сцепленных с X - хромосомой:

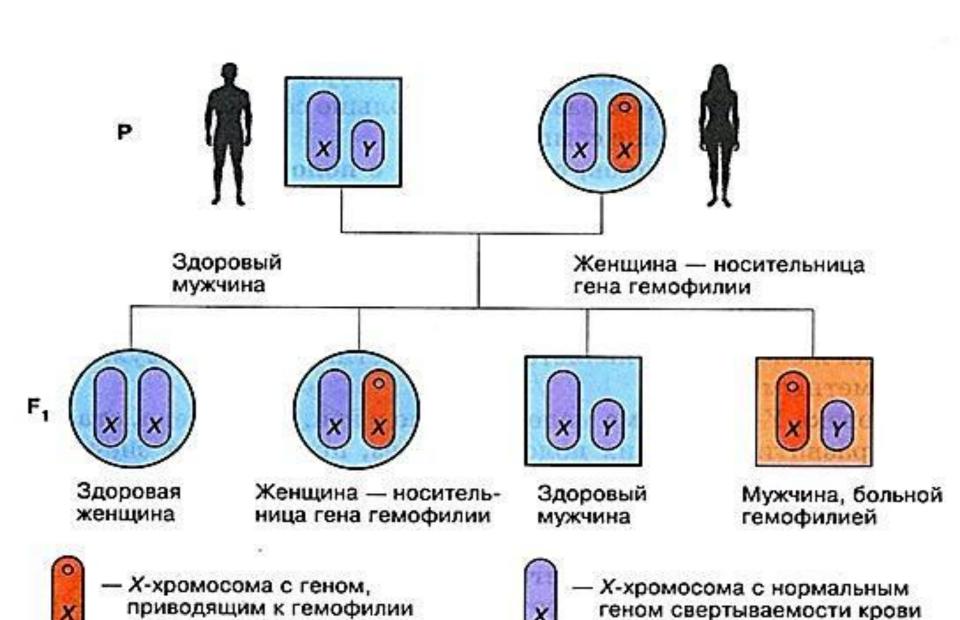
- **1.**Передача патологического гена происходит от отца дочери, все дочери больного отца будут больными.
- **2.**Больные женщины могут передавать патологический ген как дочерям, так и сыновьям.
- **3.**Если мать гомозиготна по данному признаку, то все потомство будет больным, если гетерозиготна больными будут 50%

Особенности передачи болезней, сцепленных с Y — хромосомой:

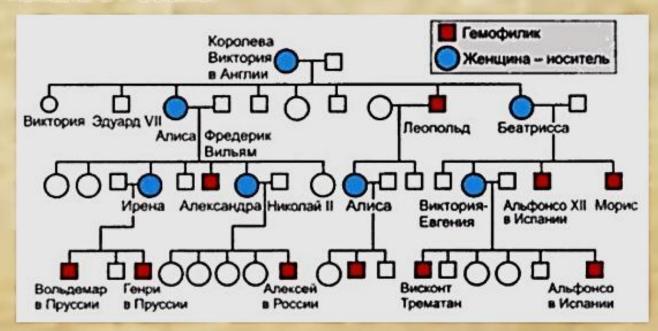
Отцовский или голандрический тип наследования, обусловленный присутствием мутаций в генах Y-хромосомы наблюдается редко, так как Y-хромосома несет сравнительно мало генов.

Болеют и передают через Ү-хромосому свое заболевание сыновьям только

Витамин D-резистентный рахит (фосфат-диабет; семейный гипофосфатемический рахит; синдром Олбрайта — Баттлера — Блюмберга). Проявляется у детей в 1-2 года, но может начаться в более старшем возрасте. Основными проявлениями болезни служат задержка роста и выраженные прогрессирующие деформации скелета, особенно нижних конечностей, что сопровождается нарушением походки ребенка ("утиная походка"); значительная болезненность костей и мышц, нередко мышечная гипотония; сохранность интеллекта у больных детей.

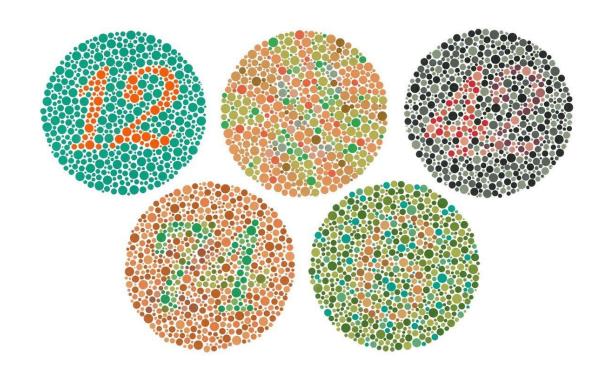


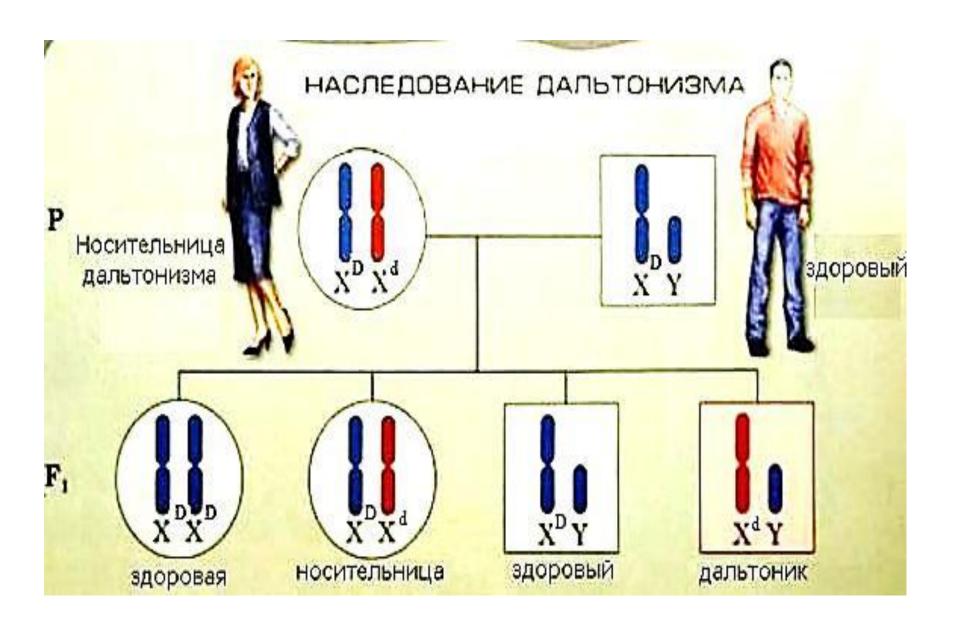
Синдром Ретта: частота 1 на 10-15 тыс. новорожденных девочек. Плоды мужского пола элиминируют во II триместре беременности матери. Примерно до 1 года-1,5 лет ребенок ничем не отличается от своих сверстников. В дальнейшем отмечается прогрессирующая задержка умственного развития вплоть до степени идиотии, нарушение походки, эпилептиформные пароксизмы. На фоне потери способности к целенаправленным движениям рук появляются стереотипные автоматизмы типа «умывания рук», которые наблюдаются во время бодрствования. Лечение не разработано.


Гемофилии A и В. В основе развития гемофилии А лежат мутации гена, ответственного за синтез VIII фактора свертываемости крови, а при гемофилии В дефектным оказывается IX фактор свертываемости крови. Оба гена локализованы в длинном плече X- хромосомы. Известно, что при гемофилии наблюдается нарушение свертываемости крови, и самые незначительные порезы могут привести больного без специальной гематологической помощи к летальному исходу. У женщин-носительниц гена гемофилии в отдельных случаях наблюдается склонность к кровотечениям, что выражается в обильных месячных и длительных кровотечениях во время родов.

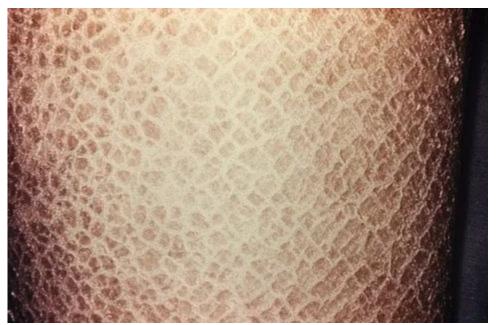
X-сцепленное рецесивное наследование на примере гемофилии (нарушение свертывания крови).

Известный всему миру пример: носитель гемофилии королева Виктория была гетерозиготной и передала мутантный ген сыну Леопольду и двум дочерям. Эта болезнь проникла в ряд королевских домов Европы и попала в Россию.





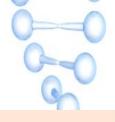
Миодистрофия Дюшенна — Беккера. Больные миодистрофией с формой Дюшенна до фертильного возраста или не доживают, или из-за тяжести состояния неспособны к воспроизводству потомства. При форме Дюшенна заболевание манифестирует в среднем в возрасте 2-5 лет. Одним из характерных признаков заболевания является формирование псевдогипертрофий икроножных мышц голеней. Прогноз для жизни неблагоприятный (погибают в возрасте до 20-25 лет). При форме Беккера болезнь манифестирует в возрасте больных от 5 до 40 лет и прогноз для жизни благоприятный. Интеллект у этих больных достаточный для семейной жизни, могут иметь детей.


Дальтонизм, частичная цветовая слепота - один из видов нарушения цветового зрения. Это заболевание впервые описано в 1794г. Дальтонизм встречается у 8% мужчин и у 0,5% женщин.

Ихтиозы - группа наследственных заболеваний, характеризующая СЯ генерализованны м нарушением процессов ороговения. Общие клинические

Совершенно безобидный признык, появление которого может быть связано с У — хромосомой.

<u>1961 – 1967 – Маршал Ниренберг, Хейт Корана, Роберт Холли, Сидни Бреннер, Френсис Крик</u> – расшифровка генетического кода. Она объяснила, каким образом язык ДНК переводится на язык молекул белка.


1970 г. - Гамильтон Смит — выделена первая рестриктаза (расщипление определенной последовательности ДНК).

<u>1972 – 73 – Стенли Коэн и Роберт Бойер</u> – рекомбинантные ДНК (это молекулы, образованные лабораторными методами генетической рекомбинации для объединения генетического материала из множества источников).

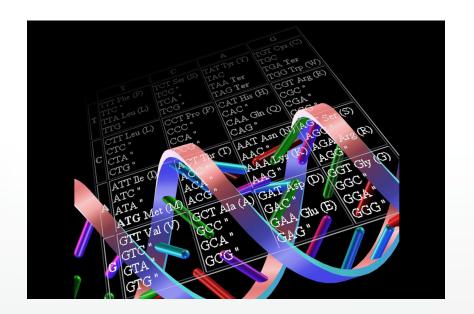
<u>1973 – Анни Чанг и Стенли Коэн</u> - рекомбинантная ДНК может сохранятся и реплицироваться в Е. coli.

1977 г. - Фред Сэнгер, ДНК – секвенирование (определение нуклеотидной последовательности).

1978 г. - Синтез соматостатина человека (гормон)с использованием технологий рекомбинантной ДНК.

Генетический код

Первое основание	Второе основание				Третье
	У(A)	Ц(Г)	A(T)	Г(Ц)	основание
У(А)	Фен	Cep	Тир	Цис	У(А)
	Фен	Cep	Тир	Цис	Ц(Г)
	Лей	Cep	_	_	A(T)
	Лей	Cep	_	Три	Г(Ц)
Ц(Г)	Лей	Про	Гис	Apr	У(А)
	Лей	Про	Гис	Apr	Ц(Г)
	Лей	Про	Глн	Apr	A(T)
	Лей	Про	Глн	Apr	Г(Ц)
A(T)	Иле	Tpe	Асн	Сер	У(А)
	Иле	Tpe	Асн	Cep	Ц(Г)
	Иле	Tpe	Лиз	Apr	A(T)
	Мет	Tpe	Лиз	Apr	Г(Ц)
Г(Ц)	Вал	Ала	Асп	Гли	У(А)
	Вал	Ала	Асп	Гли	Ц(Г)
	Вал	Ала	Глу	Гли	A(T)
	Вал	Ала	Глу	Гли	Г(Ц)

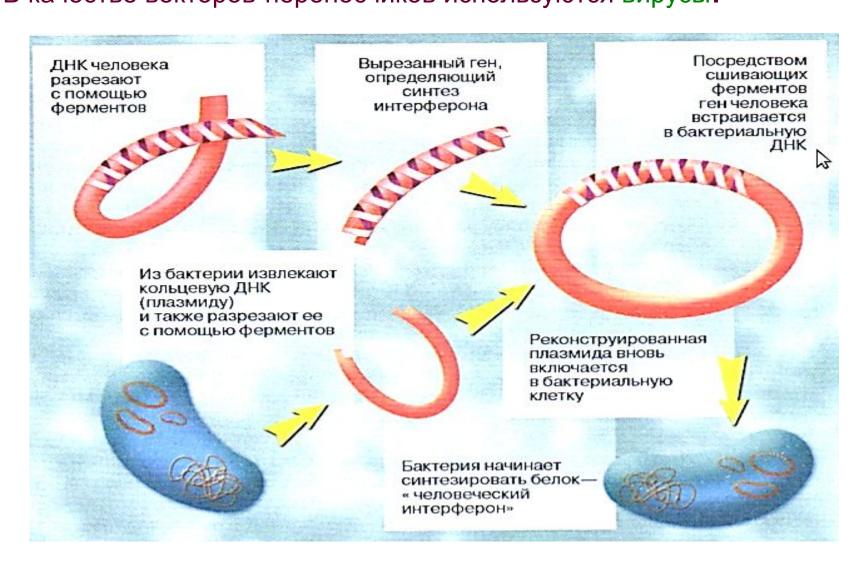


Значение генетики для селекции и медицины

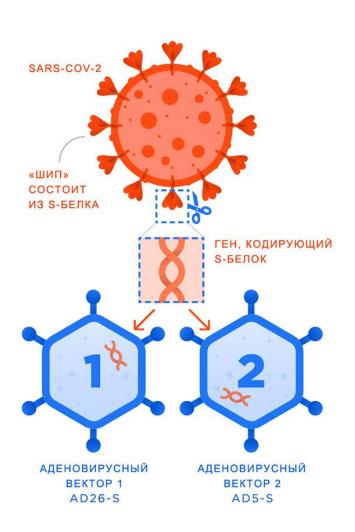
Расшифровке генетического кода ДНК человека, получившего название HUGO (Human Genome Organization).

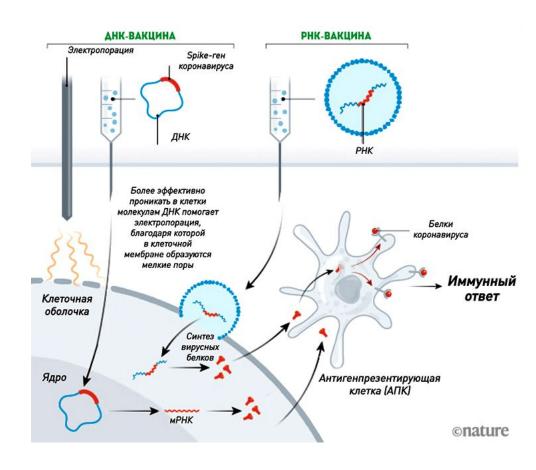
1990 — 2003 г.

- 220 ученых из разных стран, в том числе и пять советских биологов (под руководством Джеймса Уотсона под эгидой Национальной организации здравоохранения США);
- В России собственная программа «Геном человека» (руководитель А. А. Баев);
- В 2000 г. выпущен рабочий черновик структуры генома;
- В 2003 г. полный геном.



1. Генная инженерия — создание гибридных, рекомбинантных молекул ДНК, путем выделения гена из ДНК одного организма и перенесения его в ДНК другого организма.


Инструментами генной инженерии являются ферменты- рестриктазы (разрезающие молекулу ДНК) и лигазы (сшивающие молекулу ДНК). В качестве векторов-переносчиков используются вирусы.



С помощью генной инженерии созданы:

- 1. Штаммы кишечных палочек, в геном которых встроены гены человеческого инсулина (для лечения сахарного диабета), интерферона (противовирусный препарат), соматотропина (гормон роста);
 - 2. Вакцины против гепатита В; лихорадки Эбола и коронавируса.
- 3. Активатор профибринолизина (противосвертывающий препарат);
 - 4. Интерлейкин 2 (иммуномодулятор).

Вакцины на основе вектора и мРНК вакцины.

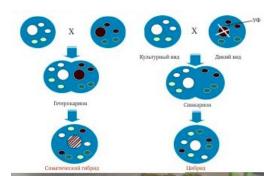
Получение генно-инженерного инсулина

Ядовитая капуста

Чтобы уменьшить использование пестицидов и при этом не давать гусеницам портить урожай, ученые выделили ген из хвоста скорпиона, кодирующий выработку яда и ввели его в ДНК капусты. Для людей этот яд безвреден.

Плетущие паутину козы

Исследователи вложили ген каркасной нити паутины в ДНК козы таким образом, чтобы животное стало производить паутинный белок только в своем молоке. Это «шелковое молоко» затем можно использовать для производства паутинного материала под названием «Биосталь».

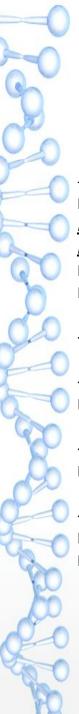


2. В области клеточной инженерии

Клеточная инженерия – это метод конструирования клеток нового типа на основе их

- Культивированиявыращивание клеток
- и тканей на
- питательной
- среде (создание культур
- клеток, клеточная терапия)
- 2. Гибридизации слияние двух различных клеток с образованием гибридной клетки (гибридомы) гибриды между опухолевыми клетками человека и красными кровяными тельцами курицы
- 3. Реконструкции создание жизнеспособной клетки из отдельных фрагментов различных клеток

3. В области биотехнологии.


Биотехнология

-это производство продуктов и материалов, необходимых для человека с помощью биологических объектов (вирусов, бактерий, простейших, дрожжевых грибков).

В середине 20 века с использованием индуцированного мутагенеза были получены:

- антибиотики (с помощью микробов, плесневых грибов);
 - фермент амилаза с помощью сенной палочки;
 - аминокислоты с помощью кишечной палочки;
- молочная кислота с помощью молочно-кислых бактерий;
 - лимонная кислота с помощью аспергилловой плесени;
 - витамины группы В с помощью дрожжей.

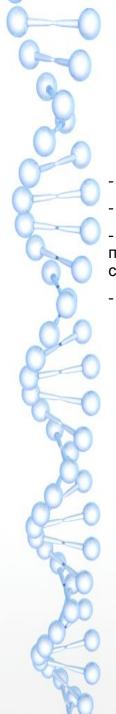
- 4. Достижения генетики в диагностике и профилактике наследственных заболеваний.
- 1. Благодаря массовому скринингу новорожденных в роддомах возможно раннее выявление и своевременное лечение фенилкетонурии и врожденного гипотиреоза.
- 2. Благодаря появлению таких методов как: УЗИ, амниоцентез, биопсия хориона, кордоцентез, ДНК-диагностики, определение альфа-фетопротеина и хориогонина возможна ранняя пренатальная диагностика наследственных заболеваний и врожденных пороков развития.

Россия

- С 2006 г. в целях раннего выявления, своевременного лечения, профилактики инвалидности и развития тяжелых клинических последствий реализуется программа массового обследования новорожденныхдетей (далее неонатальныйскрининг) на пять наследственных заболеваний: за весь период выявлено более 14 тысяч случаев вышеперечисленных заболеваний из 20 миллионов обследованных.
- В 2019 г. охват новорожденных неонатальным скринингом составилболее 95%:
- За 10 лет количество детей-инвалидов с врожденными аномалиями и наследственными заболеваниями снизилось на 30%.
- В 2019 г. Более 88% в РФ и 97% в Свердловской области беременных охвачены комплексным исследованием.
- Младенческая смертность в 2019 г. от врожденных аномалий снизилась за 2019 г. На 9,6% по сравнению с 2018 и в 2 раза по сравнению с 2007 (начало внедрения нового алгоритма комплексного пренатального исследования).

Достижения медицинской генетики.

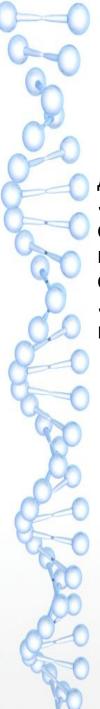
<u>Медицина будущего – это генотерапия:</u> **Неоваскулген (2011г.)-** первый российский геннотерапевтический препарат.



Самый дорогой преперат в мире

Спинально мышечная атрофия (СМА) - смертельно опасное нейродегенеративное заболевание, в процессе развития которого у пациента происходит постепенная атрофия скелетной мускулатуры. В результате человек теряет или так и не приобретает способности ходить, самостоятельно стоять, сидеть без поддержки.

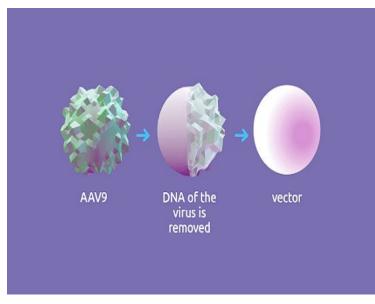
СМА возникает из-за потери участка хромосомы или точечной мутации гена *SMN1*, расположенного в пятой хромосоме. В результате этого нарушается синтез SMN-белка, недостаток которого приводит к гибели моторных нейронов и атрофии скелетной мускулатуры.



Спинраза

- Применяется с 2016 г. в США, а затем в Европе.
- С 2019 г. Одобрен в РФ
- Позволяет существенно увеличить продукцию полноценного SMN-белка, что ведет к сглаживанию симптомов заболевания.
- Стоимость лечения превышает

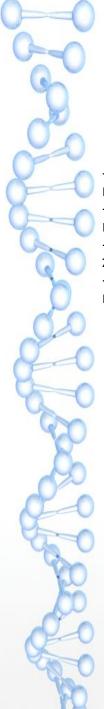
4 млн. долларов.


«Золгенсма» (компания Новартис).

Действие направлено на ген *SMN1*, который замещается функционально полноценным геном: препарат содержит функционально полноценный ген *SMN1*, который находится внутри **вектора**.

zolgensma®
(onasemnogene abeparvovec-xioi)

suspension for intravenous infusion


Условная схема механизма создания вектора

Требуется всего одна инфузия препарата «Золгенсма» в течение жизни.

Отсюда и стоимость «Золгенсмы»:

2 125 000 долл. США.

Результаты испытаний "Золгенсма"

- 36 пациентов с CMA I типа в возрасте от 0,5 до 7,2 месяцев (трое получили низкую дозу препарата, а 33 высокую).
- 31 пациент на момент одобрения (4-28 мес. после начала терапии) не нуждался в постоянной вентиляции легких.
- 19 пациентов, получивших высокую дозу, были способны сидеть без поддержки (без лечения в живых к этому моменту осталось бы примерно 8-9 пациентов, и сидеть не мог бы никто).
- -На сентябрь 2019 года, максимальный срок наблюдения за пациентами составил 4,6 лет, некоторые из них начинают самостоятельно стоять и ходить.

Самыми впечатляющими из всех историй пациентов, являются истории Маттео Алмейды и Эвелин Вильереаль. Оба ребенка были продиагностированы очень рано и получили «Золгенсму» на втором месяце жизни. Оба ребенка абсолютно здоровы, они ходят и бегают, разговаривают, много и разнообразно двигаются, не испытывают проблем с дыханием и глотанием.

На фото Эвелин Вильереаль со своими родителями