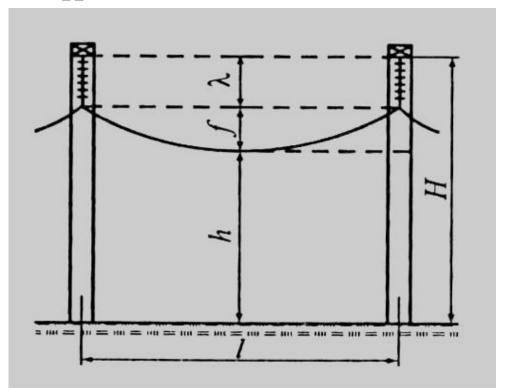
Глава 3

Конструктивное исполнение линий электропередачи

- §1 Воздушные линии электропередачи
- §2 Кабельные линии электропередачи

§1 Воздушные линии электропередачи

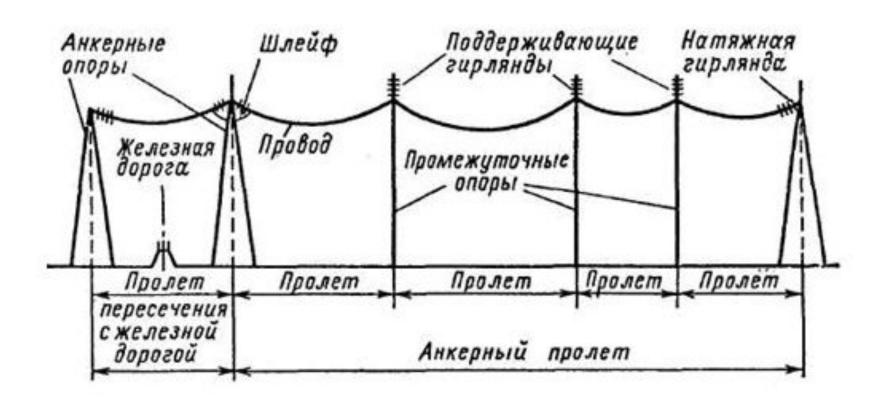
Воздушная линия (ВЛ) — это устройство для передачи электрической энергии по проводам, расположенным на открытом воздухе и прикрепленным при помощи изоляторов и арматуры к опорам или кронштейнам инженерных сооружений.



Главные элементы ВЛ:

- провода фаз;
- грозозащитные тросы;
- опоры ВЛ;
- изоляторы;
- линейная арматура;
- фундаменты опор ВЛ.

Основные габаритные размеры ВЛ:


- стрела провеса провода _ _ ƒ
- габарит линии h
- длина гирлянды изоляторов λ
- \bullet высота опоры ВЛ H

Конструктивные параметры ВЛ (35—750 кВ)

U, кВ	35	110	220	330	500	750
<i>l</i> , м	150-200	170-250	250-350	300-400	350-450	450-750
$D_{{}_{M}\!\varphi}$, м	3,0	4,0	6,5	9,0	12,0	17,5
λ, м	0,7	1,2-1,4	2,2-2,3	3,0-3,2	4,5-4,9	6,7-7,5
Н, м	10	13-14	22-26	25-30	27-32	30-41
<i>h</i> , м	6-7	6-7	7-8	7,5-8	8	10-12
n	1	1	1	2	3	4
F, mm ²	50-185	70-240	240-400	240-500	300-500	400-500

Схема анкерного пролёта воздушной линии и пролёта пересечения с железной дорогой.

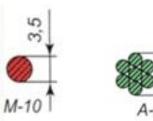
Элементы ВЛ работают в сложных и разнообразных географических и климатических условиях. Кроме того, они должны противостоять действию сил, обусловленных:

- весом всех элементов линии;
- весом гололедных отложений на проводах, тросах и опорах;
- давлением ветра на провода, тросы и опоры;
- тяжением по проводам и тросам;
- воздействием вибрации проводов;
- динамическим воздействием от пляски проводов.

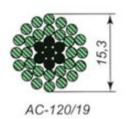
Провода ВЛ

Проводниковые материалы, из которых изготавливаются провода воздушных линий электропередачи должны удовлетворять ряду технических и экономических требований:

- невысокое удельное электрическое сопротивлением ρ ;
- плотность этих материалов у не должна быть высокой;
- высокая механическая прочность, оцениваемая по пределу прочности на разрыв ;
- стойкость к атмосферным воздействиям и химическим реагентам, находящимся в воздухе;
- материал не должен быть дефицитным или дорогим.

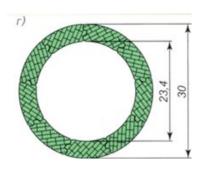

Основные характеристики проводниковых материалов

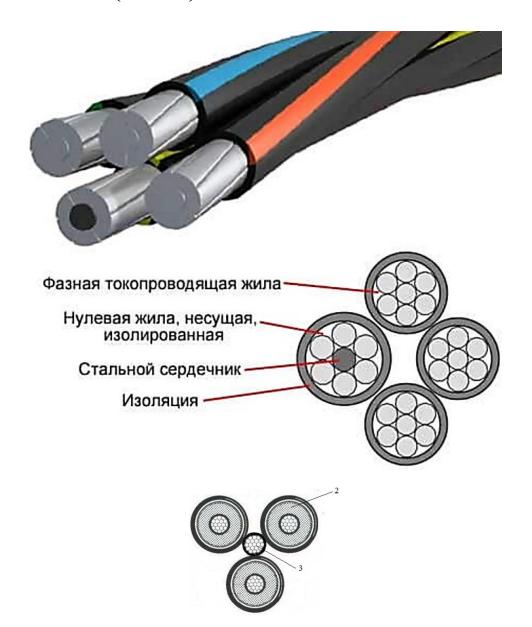
Материал	Р Ом • мм ² /км	γ _{κΓ/м³}	$\sigma_p = H/MM^2$
Медь	17,8—18,5	8700	390
Алюминий	30,0—32,5	2750	160
Сплав АВ-Е	Тоже	2790	300
Сталь		7850	1200


Классификация проводов ВЛ:

□ неизолированные провода:

• монометаллические (медь, алюминий, сталь) и биметалические (сталеалюминиевые);




AC 120/19, ACK 240/56;

$$k_{\rm F} = \frac{F_{\rm an}}{F_{\rm cr}} = (0,64 \div 18,1)$$

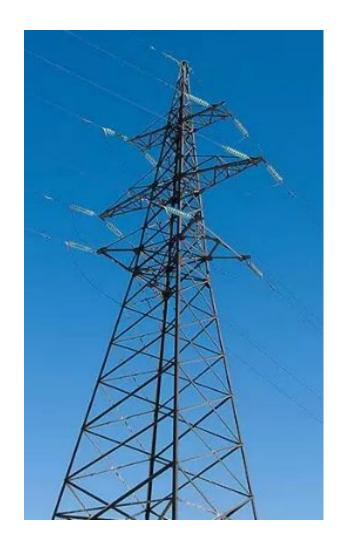
- однопроволочные и многопроволочные;
- расширенные и полые;

🛘 изолированные (СИП)

Классификация опор ВЛ:

🛘 по количеству трехфазных цепей:

- одноцепные;
- двухцепные;
- многоцепные.



□ по способу крепления проводов:

- промежуточные;
- анкерные.

□ по положению на трассе:

- расположенные на прямых ее участках;
- угловые.

□ по материалу опор:

• деревянные;

• железобетонные;

• металлические, (стальные), решетчатые

8

• стальные, нового поколения, на базе стальных многогранных стоек.

Преимущества использования многогранных опор ЛЭП:

1. Небольшие сроки строительства.

Железобетонные и решетчатые аналоги возводятся в 2-4 раза медленнее, чем многогранные опоры ЛЭП.

2. Низкие материальные затраты.

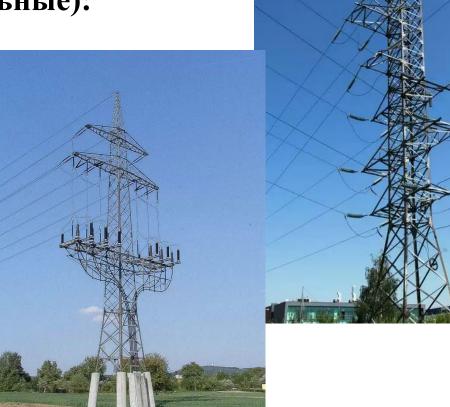
Исследования показали, что экономия при возведении многогранных металлических опор ЛЭП составляет около 12-15%, если сравнивать их с бетонными аналогами, и 40-50%, если сравнивать с решетчатыми опорами. Это объясняется несколькими причинами:

- Увеличенным межопорным расстоянием;
- . Меньшими расходами на транспортировку и СМР;
- Увеличенными сроками использования;
- Низкими затратами на утилизацию и демонтаж;
- Экономический эффект увеличивается, если монтаж или замена опор происходит в удаленных и труднодоступных районах.
 - 3. Низкая стоимость и удобная транспортировка.

- 4. Уменьшенные расходы на постоянный и временный землеотвод.
- 5. Надежность.

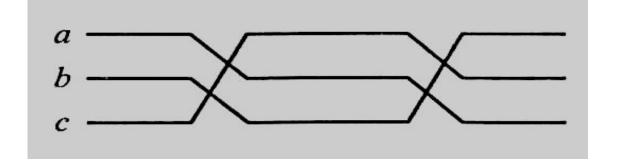
Высокая надежность многогранных опор ЛЭП складывается из нескольких факторов:

- Долговечность. Оцинкованные многогранные опоры могут прослужить порядка 70 лет, обычные многогранные без оцинкования не меньше 50, против 30 лет у бетонных опор и 35-45 решетчатых.
- · Безотказность. Как показывает многолетняя практика и наблюдения, многогранные стальные опоры ЛЭП выходят из строя значительно реже своих аналогов.
- Ремонтопригодность. Катастрофические разрушения принести опоре практически невозможно, а чтобы заменить вышедшие из строя узлы нужно минимум времени.
- · Сохраняемость. Работоспособность сохраняется в норме даже при многократных погрузо-разгрузочных работах или длительном хранении.
 - 6. Вандалоустойчивость.


□ по назначению (специальные):

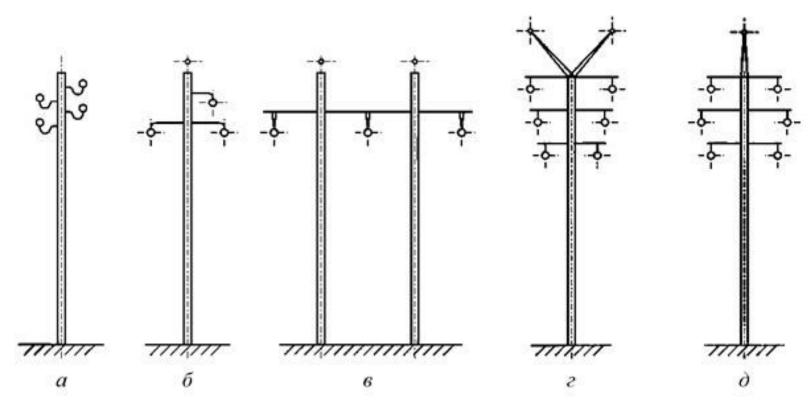
• ответвительные;

• концевые;


• переходные;

• транспозиционные.

Цикл транспозицции


Расположение проводов на опорах

□ На одноцепных опорах:

- по вершинам равностороннего треугольника (а,б);
- горизонтально (в).

□ На двухцепных опорах:

- обратной ёлкой (г);
- по вершинам шестиугольника(д).

Изоляторы

🛘 штыревые:

- фарфоровые;
- стеклянные.

• фарфоровые;

• стеклянные;

• полимерные (из стеклопластика).

Грозозащитные тросы — стальные оцинкованные многопроволочные канаты сечением 35, 50 и 70 мм².

Линейная арматура — устройства, обеспечивающие:

- надежное сочленение отдельных элементов конструкции ВЛ;
- защиту гирлянд подвесных изоляторов отповреждения электрической дугой при пробое;
- фиксацию взаимного расположения в пространстве расщепленных фаз и соседних фаз по отношению друг к другу.

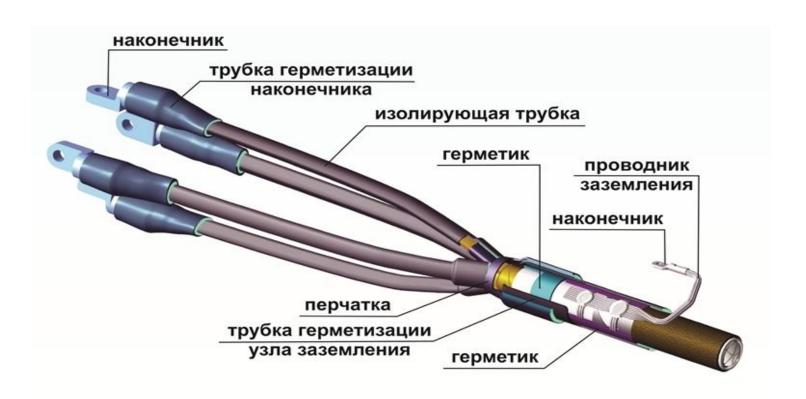
§2 Кабельные линии электропередачи

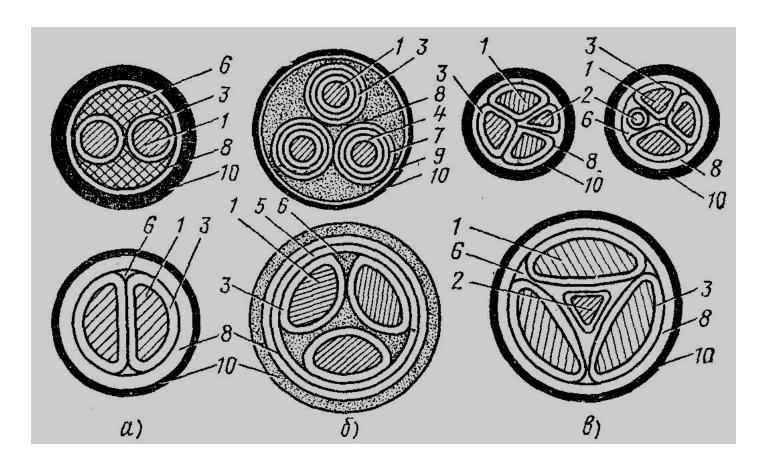
Кабелем называется провод, заключенный в герметическую оболочку, который можно прокладывать в воде, земле и на воздухе. Это готовое заводское изделие, состоящее из изолированных токоведущих жил, заключенных в защитную герметичную оболочку, поверх которой в зависимости от условий прокладки может находиться защитный покров.

Классификация кабелей:

- **по материалу токопроводящих жил** кабели с алюминиевыми и медными жилами;
- по материалу изоляции токоведущих жил кабели с бумажной, пластмассовой (поливинилхлоридной), резиновой и из сшитой полиэтиленовой изоляцией;
- по материалу защиты изоляции жил кабелей от влияния внешней среды кабели в металлической, пластмассовой и резиновой оболочке;
- по способу защиты от механических повреждений бронированные и небронированные;
- по количеству жил одно-, двух, трех- и четырехжильные.

Основные конструктивные элементы кабелей:

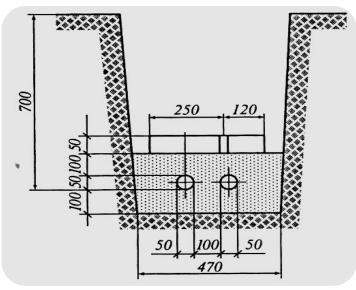

- □ токопроводящие жилы:
- основные и нулевые;
- алюминиевые и медные;
- однопроволочные и многопроволочные;
- круглого и сегментного сечений.
- □ изоляция для необходимой электрической прочности жил кабеля по отношению друг к другу и к заземленной оболочки:
- изоляция жил и поясная изоляция.
- □ **защитные герметичные оболочки** предохраняют изоляцию от вредного воздействия влаги, света, газов, кислот и механических повреждений:
- из свинца, алюминия, резины и пластмассы.
- □ **защитные покрововы** для защиты оболочек кабеля от внешних воздействий и в зависимости от конструкции могут состоять из:
- подушки, которая накладывается на оболочку для ее предохранения от механических повреждений лентами и проволоками брони;
- бронипокрова, который защищает кабель от внешних механических воздействий;
- наружного покрова, предназначенного для для защиты брони от коррозии.


электропроводящие экраны для выравнивания электрического
поля силовых кабелей;
жилы защитного заземления;
заполнители для устранения свободных промежутков между
конструктивными элементами кабеля с целью гарметизации, придания
кабелю необходимой формы и механической ы прочности.
кабельная арматура – для соединения отдельных отрезков
(строительных длин) кабеля (соединительные муфты) и для
присоединения концов кабеля к аппаратуре или шинам
распределительных устройств (концевые муфты).

Марки кабеля состоят из начальных букв слов, характеризующих их конструкцию.

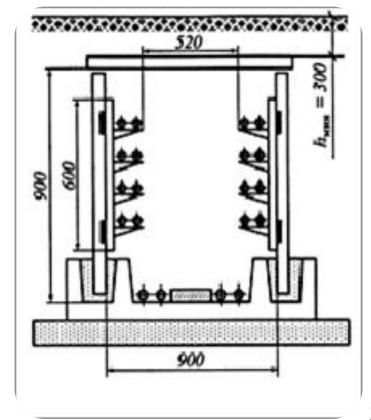
Рядом с маркой кабеля указывают число и сечение токоведущих жил.

Сечения: а) двухжильных кабелей с круглыми и сегментными жилами трехжильные кабели с поясной изоляцией и отдельными оболочками

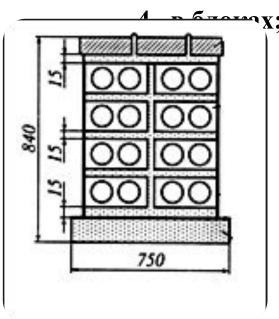

в) четырехжильные кабели а нулевой жилой круглой, секторной и треугольной формы.

1 - токопроводящая жила; 2 — нулевая жила; 3 — изоляция жилы; 4 — экран на токопроводящей жилы; 5 — поясная изоляция; 6 — заполнитель; 7 — экран на изоляции жилы; 8 — оболочка; 9 — бронепокров; 10 — наружный защитный покров.

б)

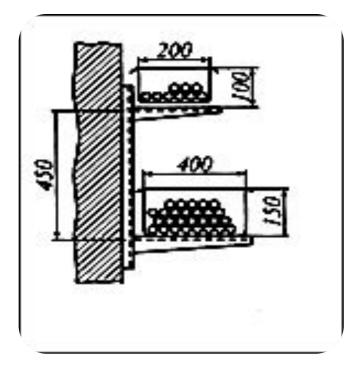

34

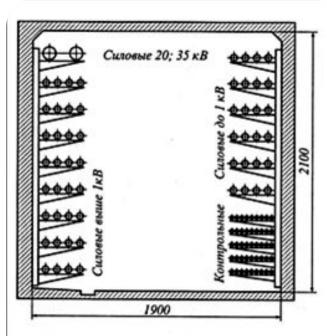
Способы прокладки кабелей:

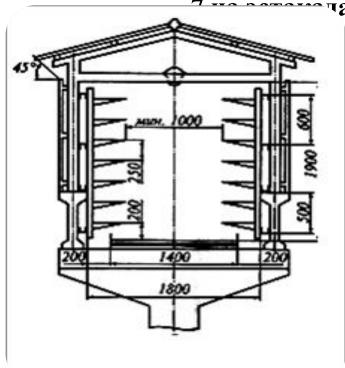


2. в трубах;

3. в каналах;






5. в туннелях и коллекторах;

6. на лотках;

тах и в галереях;

. Прокладки кабелей на тросах.

Прокладка кабельных линий в туннеле.

Прокладка кабельных линий в коллекторах

