Математическая логика

- § 8. Логика и компьютеры
- § 9. <u>Логические элементы</u>
- § 10. <u>Другие логические операции</u>
- § 11. <u>Логические выражения</u>
- § 12. Множества и логика

Математическая логика

§ 5. Логика и компьютер

Логика, высказывания

Логика (др.греч. λογικος) – это наука о том, как правильно рассуждать, делать выводы, доказывать утверждения.

Формальная логика отвлекается от конкретного содержания, изучает только истинность и ложность высказываний.

Логическое высказывание – это

повествовательное предложение, относительно которого можно однозначно сказать, истинно оно или ложно.

Высказывание или нет?

- ✓ Сейчас идет дождь.
- ✓ Жирафы летят на север.История интересный предмет.
- ✓ У квадрата 10 сторон и все разные.

Красиво!

В городе N живут 2 миллиона человек.

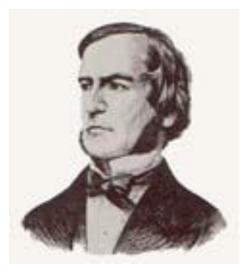
Который час?

Логика и компьютер

двоичная логика

Любое высказывание может быть **ложно** (0) или **истинно** (1).

Логика изучает операции между 0 и 1!



Связь с двоичным кодированием!

Алгебра логики — это математический аппарат, с помощью которого записывают, упрощают и преобразуют логические высказывания, вычисляют их значения.

Алгебра высказываний, булева алгебра

Джордж Буль

Простые и составные высказывания

А – Сейчас идет дождь.)

В – Форточка открыта.

простые высказывания (элементарные)

Составные высказывания строятся из простых с помощью логических связок (операций) «и», «или», «не», «если ... то», «тогда и только тогда» и др.

А и В Сейчас идет дождь и открыта форточка.

А или не В Сейчас идет дождь или форточка закрыта.

если А, то В Если сейчас идет дождь, то форточка открыта.

А тогда и только Дождь идет тогда и только тогда, когда открыта **тогда, когда В** форточка.

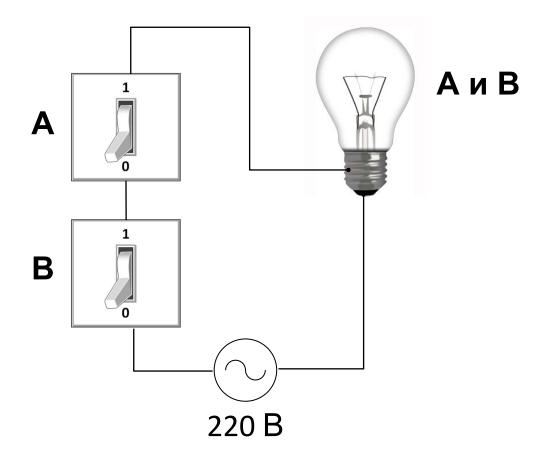
Операция НЕ (инверсия)

Если высказывание **A** истинно, то «**не A**» ложно, и наоборот.

Α	не А	также A, not A
0	1	таблица истинности
1	0	операции НЕ

Таблица истинности логического выражения X — это таблица, где в левой части записываются все возможные комбинации значений исходных данных, а в правой — значение выражения X для каждой комбинации.

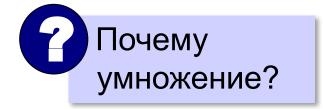
Разные операции с одной переменной



$$2^2 = 4$$

Α	не А	Α	0	1
0	1	0	0	1
1	0	1	0	1

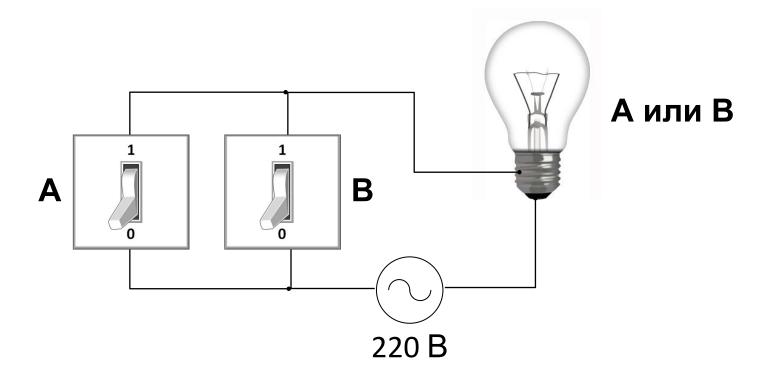
Операция И


Высказывание «**A** и **B**» истинно тогда и только тогда, когда **A** и **B** истинны одновременно.

Операция И (логическое умножение, конъюнкция)

	Α	В	АиВ
0	0	0	0
1	0	1	0
2	1	0	0
3	1	1	1

также A·B, A and B



конъюнкция – от лат. conjunctio — соединение

$$A$$
 и $B = min(A, B)$

Операция ИЛИ (логическое сложение, дизъюнкция)

Высказывание «**A** или **B**» истинно тогда, когда истинно **A** или **B**, или оба вместе.

Операция ИЛИ (логическое сложение, дизъюнкция)

Α	В	А или В
0	0	0
0	1	1
1	0	1
1	1	1

также: **A+B**, **A or B**

1+1=1

дизъюнкция – от лат. *disjunctio* — разъединение **A или B = max(A, B)**

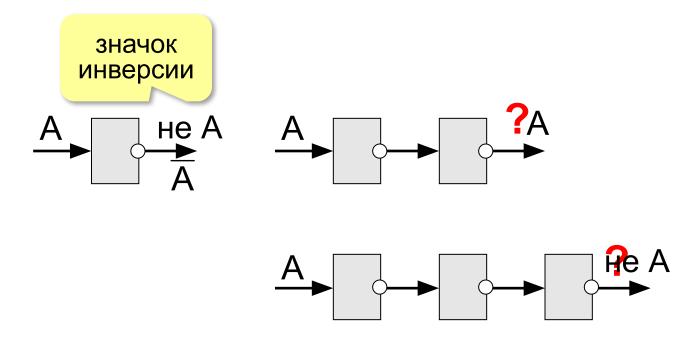
Упрощение логических выражений

$$A u 0 = A \cdot 0 = 0$$

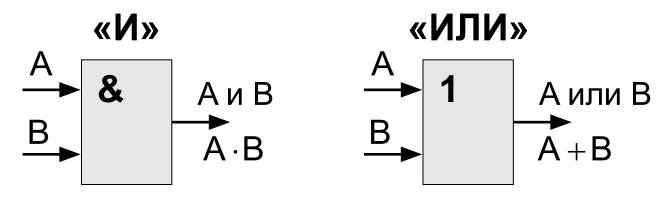
$$A u 1 = A \cdot 1 = A$$

$$A$$
 или $0 = A + 0 = A$

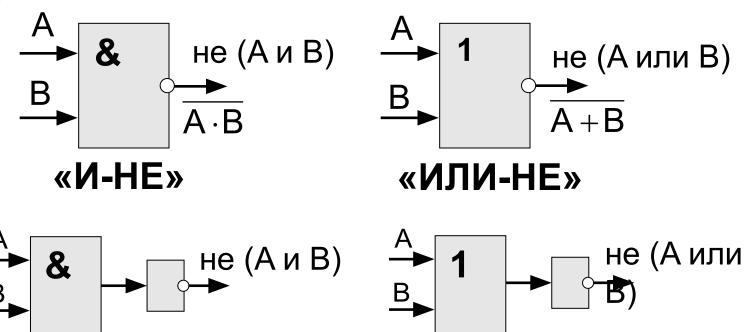
$$A$$
 или $1 = A + 1 = 1$

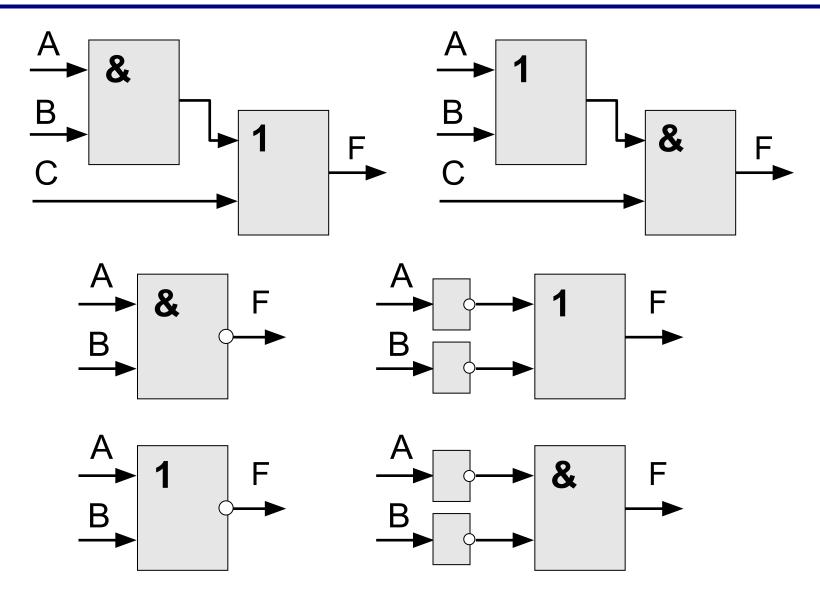

A и не
$$A = A \cdot \overline{A} = 0$$

A или (не A) = A +
$$\overline{A}$$
 = 1

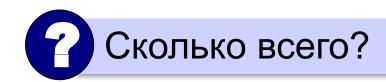

Математическая логика

§ 6. Логические элементы


Элемент «НЕ»


Элементы «И» и «ИЛИ»

Двойные элементы:


Составьте таблицы истинности

Математическая логика

§ 7. Другие логические операции

Операции с двумя переменными

Α	В	F	
0	0	?	<mark>0 или 1</mark>
0	1	?	$2^4 = 16$
1	0	?	
1	1	?	

Импликация

A

$$X = A \rightarrow B$$

B

Импликация A → B истинна, если *не исключено*, что из A следует B.

Α	В	F
0	0	1
0	1	1
1	0	0
1	1	1

Идёт дождь, но Лена не раскрыла зонтик.

Постройте таблицы истинности

$$X = B \rightarrow A$$

$$B \rightarrow A \neq A \rightarrow B$$

$$X = \overline{A} + B$$

$$A \rightarrow B = \overline{A} + B$$

$$X = \overline{B} \rightarrow \overline{A}$$

$$A \rightarrow B = \overline{B} \rightarrow \overline{A}$$

Эквиваленция

Высказывание «**A** ↔ **B**» истинно тогда и только тогда, когда **A** и **B** равны.

Α	В	$A \leftrightarrow B$
0	0	1
0	1	0
1	0	0
1	1	1

Постройте таблицы истинности

$$X = A \cdot B + \overline{A} \cdot \overline{B}$$

$$A \longleftrightarrow B = A \cdot B + \overline{A} \cdot \overline{B}$$

$$X = (A + \overline{B}) \cdot (\overline{A} + B)$$

$$A \leftrightarrow B = (A + \overline{B}) \cdot (\overline{A} + B)$$

$$X = A \cdot \overline{B} + \overline{A} \cdot B$$

$$A \longleftrightarrow B = (A \cdot \overline{B} + \overline{A} \cdot B)$$

Исключающее «ИЛИ»

Высказывание «**A** ⊕ **B**» истинно тогда, когда истинно **A** или **B**, но *не оба одновременно* (**A** ≠ **B**).

«Либо пан, либо пропал».

Α	В	A ⊕ B
0	0	0
0	1	1
1	0	1
1	1	0

арифметическое сложение, 1+1=2

остаток

сложение по модулю 2: A ⊕ B = (A + B) mod 2

Постройте таблицы истинности

$$X = A \cdot \overline{B} + \overline{A} \cdot B$$

$$A \oplus B = A \cdot \overline{B} + \overline{A} \cdot B$$

$$X = (A + B) \cdot (\overline{A} + \overline{B})$$

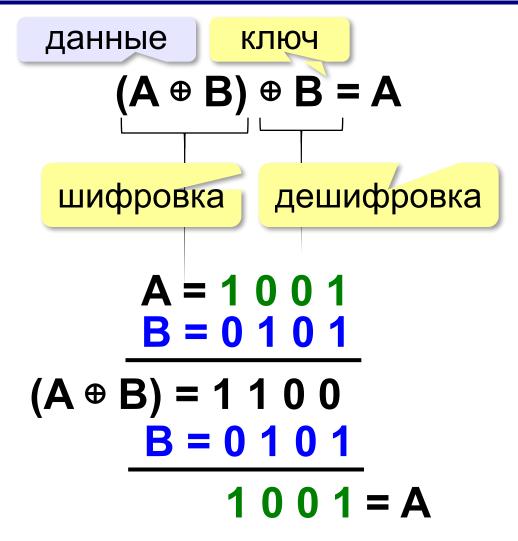
$$A \oplus B = (A + B) \cdot (\overline{A} + \overline{B})$$

Упрощение логических выражений

$$A \oplus 0 = A$$

$$A \oplus 1 = \overline{A}$$

$$A \oplus A = 0$$


$$(A \oplus B) \oplus B = A$$

операция обратима

Повторное применение операции ⊕ с тем же **В** восстанавливает исходное **А**!

Шифрование

Математическая логика

§ 8. Логические выражения

Логические выражения

Логическое выражение — это выражение, результат вычисления которого — логическое значение (истина или ложь).

Авария = вышли из строя 2 из 3-х двигателей.

А – «Двигатель № 1 неисправен».

В – «Двигатель № 2 неисправен».

С – «Двигатель № 3 неисправен».

логическое выражение

Аварийный сигнал:
$$X = (A \cdot B) + (A \cdot C) + (B \cdot C)$$

X = «Неисправны два двигателя»

= (А и В) или (А и С) или (В и С)

Формализация – это переход к записи на формальном языке!

Порядок вычисления

- •скобки
- •HE
- •N
- •ИЛИ, исключающее ИЛИ
- •импликация
- •эквиваленция

$$X = A \cdot B + (\overline{A} \cdot B + \overline{B})$$

Таблицы истинности

$$X = A \cdot \overline{B} + \overline{A} \cdot B$$

	Α	В	$A \cdot \overline{B}$	$\overline{A} \cdot B$	X
0	0	0	0	0	0
1	0	1	0	1	1
2	1	0	1	0	1
3	1	1	0	0	0

Логические выражения могут быть:

- вычислимыми (зависят от исходных данных)
- тождественно истинными (всегда 1, тавтология)
- тождественно ложными (всегда 0, противоречие)

Таблицы истинности

$$X = (A + B) \cdot (\overline{A} + \overline{B})$$

равносильны

Α	В	A+B	$\overline{A} + \overline{B}$	X
0	0	0	1	0
0	1	1	1	1
1	0	1	1	1
1	1	1	0	0

$A \cdot \overline{B} + \overline{A} \cdot B$
0
1
1
0

Если два выражения принимают одинаковые значения при всех значениях переменных, они называются равносильными (определяют одну и ту же логическую функцию).

Неполные таблицы истинности

Α	В	С	F
0	0	1	1
0	1	1	0
1	1	1	0

7	Сколько строк в полной		
	таблице?	$2^3 = 8$	

Сколько подходящих функций? $2^5 = 32$

a)
$$F = A + \overline{B} + \overline{C}$$

один ноль в таблице

б)
$$F = A \cdot \overline{C} + B$$

по 1-й строке

$$F = A \cdot B + C$$

по 2-й строке

$$\mathsf{F} = \overline{\mathsf{A}} \cdot \overline{\mathsf{B}} \cdot \mathsf{C}$$

Сколько нулей и единиц?

в таблице истинности функции от 3-х переменных:

	нулей	единиц
$A+B+\overline{C}$	1	7
$A \cdot B \cdot \overline{C}$	7	1
$\overline{A} \cdot \overline{B} \cdot C$	7	1
$\overline{A} + \overline{B} + C$	1	7
$\overline{A}\cdot(\overline{B}+C)$	5	3

Неполные таблицы истинности

Α	В	С	F
0		1	0
1	0		1
		1	1

один ноль, две единицы

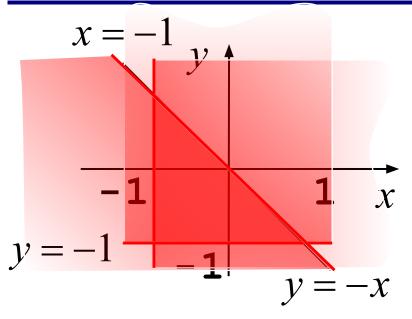
a)
$$F = \overline{A} + B + \overline{C}$$

$$1+B+0\neq 0$$

б)
$$F = \overline{A} \cdot B \cdot C$$

$$0\cdot 0\cdot C\neq 1$$

$$\mathsf{B})\;\mathsf{F}=\mathsf{A}+\overline{\mathsf{B}}+\overline{\mathsf{C}}$$


$$\Gamma$$
 $F = A \cdot \overline{B} \cdot C$

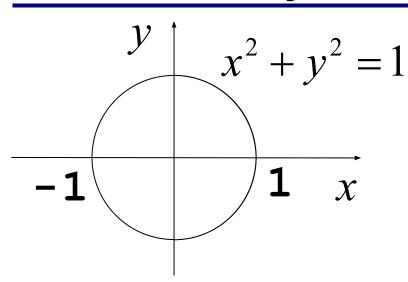
только 1 единица, все строки разные!

Составление условий

Составление условий

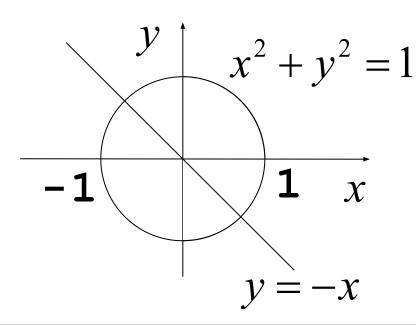
левая граница: $\chi \ge -1$

нижняя граница: $y \ge -1$


верхняя граница: $y \le -x$

Всё одновременно!

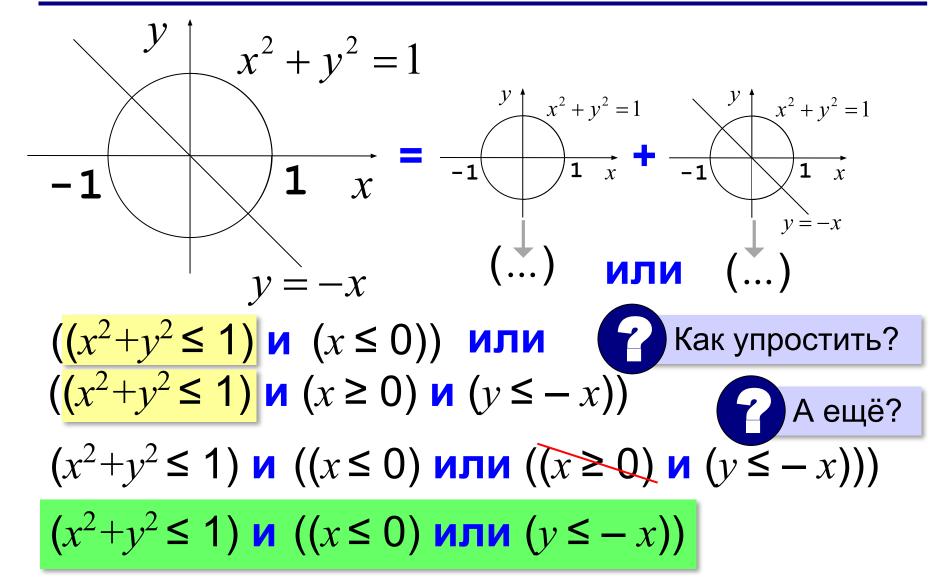
$$(x \ge -1)$$
 u $(y \ge -1)$ **u** $(y \le -x)$


Составление условий

левая

правая

$$(x^2+y^2 \le 1)$$
 u $(x \le 0)$


левая

НИЖНЯЯ

$$(x \ge 0)$$
 u $(x^2+y^2 \le 1)$
u $(y \le -x)$

верхняя

Составление условий

Определение истинности выражений

Для каких из указанных значений числа X **истинно** высказывание:

$$(X < 5)$$
 и не $(X < 1)$?

 $X = 2$: (1) и не (0) $(1$ и 1) $= 1$
 $X = 4$: (1) и не (0) $(1$ и 1) $= 1$
 $X = 8$: (0) и не (0) $(0$ и 1) $= 0$

можно не вычислять!

Табличный метод

Для каких из указанных значений числа X **истинно** высказывание:

$$R = (X < 5) \mu He (X < 1)$$
?

X	X < 5	X < 1	He (X < 1)	R
2				
4				
8				

И

Для каких из указанных значений числа X **ЛОЖНО** высказывание:

(не
$$(X \ge 3)$$
 и не $(X = 8)$) или $(X \le 5)$?

```
?+1
X = 4: (He (1) и He (0)) или (1) = 1
X = 1: (He (0) и He (0)) или (1) = 1
X = 8: (He (1) и He (1)) или (0)
(0 u 0) или (0) = 0
```

Для каких значений числа **X истинно** высказывание:

1, 2, 3, 4

Для каких из приведённых имён **ЛОЖНО** высказывание: (Первая буква согласная)

НЕ(Первая буква гласная) или (Последняя буква гласная)?

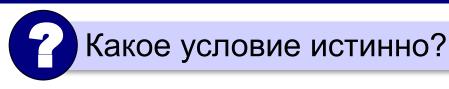
	ПервСогл	ПослГлас	R	
Никита				
Антон				
Даниил				
Инна				
Кирилл				

Задачи (ЛОЖНО → ИСТИННО)

ЛОЖНО А или В

Какое условие истинно?

Α	В	А или В
0	0	0
0	1	1
1	0	1
1	1	1


Α	В	?
0	0	1 🗸
0	1	0
1	0	0
1	1	0

ЛОЖНО А или В **ИСТИННО** не А и не В

$$A + B = 0$$

Задачи (ЛОЖНО → ИСТИННО)

ЛОЖНО А и В

Α	В	АиВ
0	0	0 🗸
0	1	0 🗸
1	0	0 🗸
1	1	1

Α	В	?
0	0	1 🗸
0	1	1 🗸
1	0	1 🗸
1	1	0

ЛОЖНО А и В **ИСТИННО** не А или не В

$$\mathbf{A} + \mathbf{B} = 1$$

Задачи (ЛОЖНО → ИСТИННО)

Для перехода от ложного условия к равносильному истинному нужно:

- заменить все простые условия на обратные
- заменить И → ИЛИ
- заменить ИЛИ → И

Для каких из приведённых имён **ЛОЖНО** высказывание:

НЕ(Первая буква гласная) или (Последняя буква гласная)?

$$A + B = 0$$

(Первая буква гласная) и (Последняя буква согласная)

$$\overline{A} \cdot \overline{B} = 1$$

Никита <mark>Антон</mark> Даниил

Инна

Кирилл

Егор

Мефодий

Игнат

Для каких из приведённых имён **ЛОЖНО** высказывание:

НЕ(Первая буква гласная) и (Последняя буква гласная)?

 $A \cdot B = 0$

 $\overline{A} + B = 1$

(Первая буква гласная) или (Последняя буква согласная)

Никита

Антон

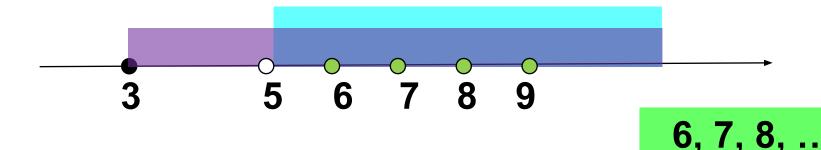
Даниил

Инна

Кирилл

Егор

Мефодий


Игнат

Для каких значений числа X **ЛОЖНО** высказывание:

ЛОЖНО ((X < 3) и (X <> 8)) или (X ≤ 5)

И ↔ ИЛИ, обратные условия

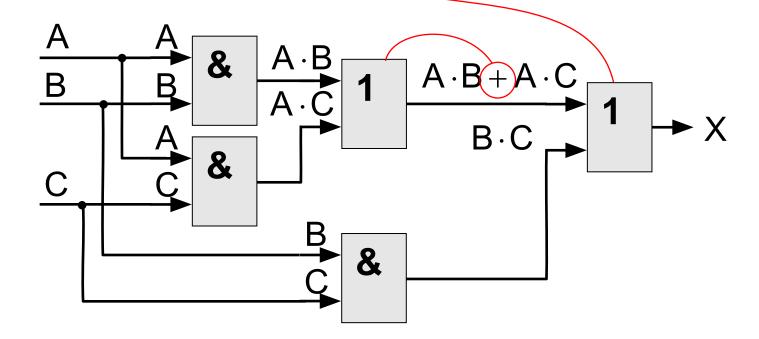
ИСТИННО ((X ≥ 3) или (X = 8)) и (X > 5)

Напишите наибольшее число х, для которого истинно высказывание:

(x < 42) и не (в числе x нет одинаковых цифр)

(х < 42) и 🙀 (в числе х ЕСТЬ одинаковые цифры)

33


Напишите наименьшее число x, для которого **ЛОЖНО** высказывание:

Логические схемы

$$X = A \cdot B + A \cdot C + B \cdot C$$

Какая последняя операция?

Математическая логика

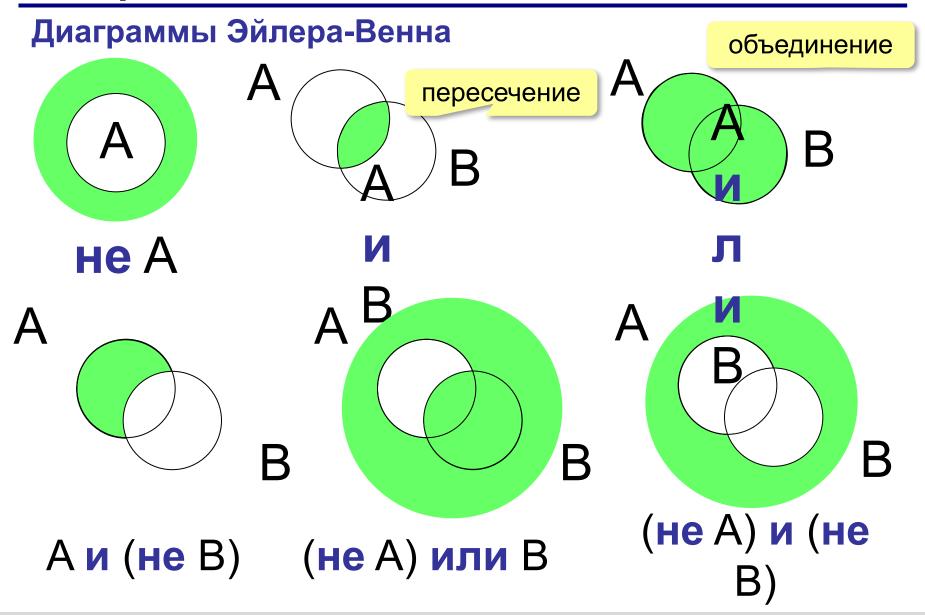
§ 12. Множества и логика

Что такое множество?

Множество – некоторый набор элементов, каждый из которых отличается от остальных.

пустое множество: ∅ конечное число элементов: буквы русского алфавита бесконечное число элементов: натуральные числа

Как задать множество?


• перечислением элементов

{Вася, Петя, Коля}

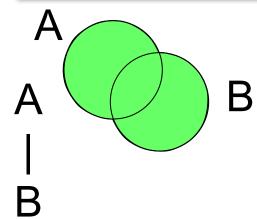
• логическим выражением:

$${x: x > 0}$$

Изображение множеств

Количество элементов множеств

Поисковые запросы в Интернете:


$$&=$$
 и (and) $|=$ или (or)

 N_{Δ} – количество элементов множества А

? Что больше?

$$N_A \geq N_{A\&B}$$

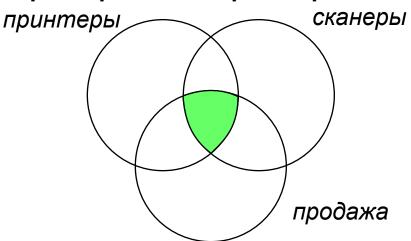
$$N_A \leq N_{A|B}$$

& всегда сужает область, | - расширяет!

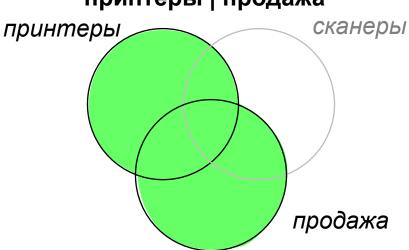
В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу.

А: принтеры & сканеры & продажа

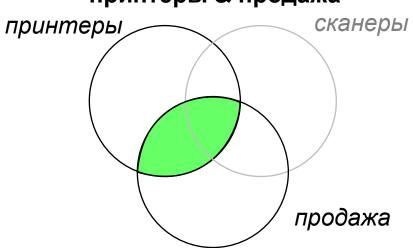
Б: принтеры | продажа

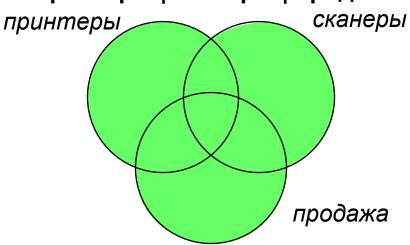

В: принтеры & продажа

Г: принтеры | сканеры | продажа



Использование диаграмм


принтеры & сканеры & продажа


принтеры | продажа

принтеры & продажа

принтеры | сканеры | продажа

В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке убывания количества страниц, которые найдет поисковый сервер по каждому запросу.

А: принтеры & сканеры & продажа

Б: (принтеры & сканеры) | продажа

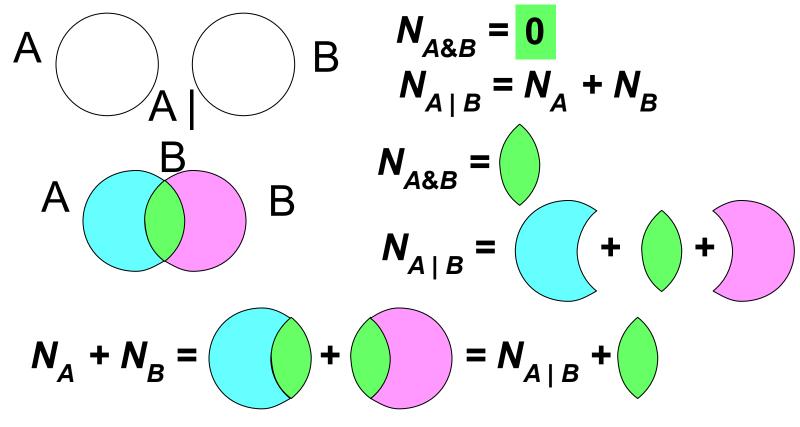
В: (принтеры | сканеры) & продажа

Г: принтеры | сканеры | продажа

Количество элементов множеств

Известно количество сайтов, которых находит поисковый сервер по следующим запросам :

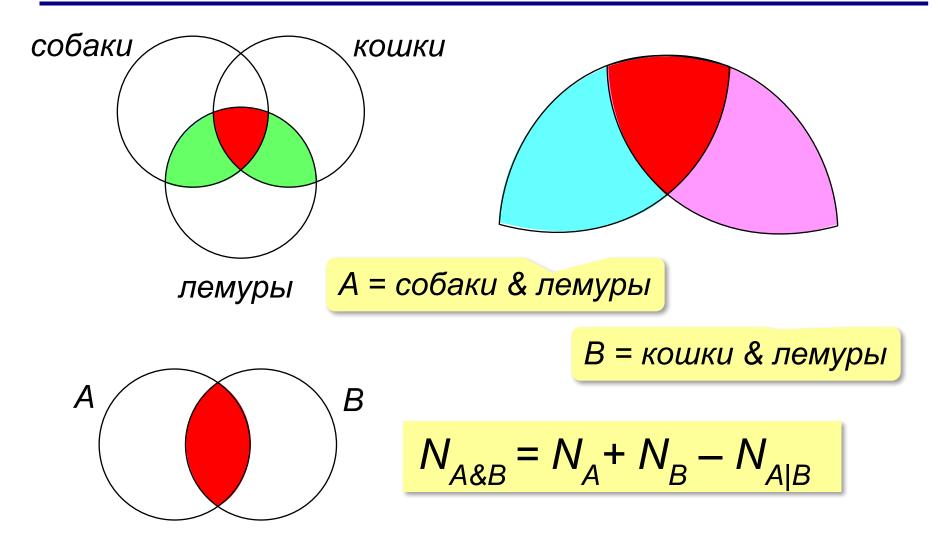
Запрос	Количество сай	N _A
огурцы	100	
помидоры	200	N _B
огурцы & помидоры	50	N
		A&B


Сколько сайтов будет найдено по запросу

огурцы | помидоры

Количество элементов множеств

В общем виде:


$$N_{A\mid B} = N_A + N_B - N_{A \& B}$$

Формула включений и исключений

Известно количество сайтов, которых находит поисковый сервер по следующим запросам:

Запрос	Количество сайтов
собаки & лемуры	320
кошки & лемуры	280
(кошки собаки) & лемуры	430

Сколько сайтов будет найдено по запросу собаки & кошки & лемуры

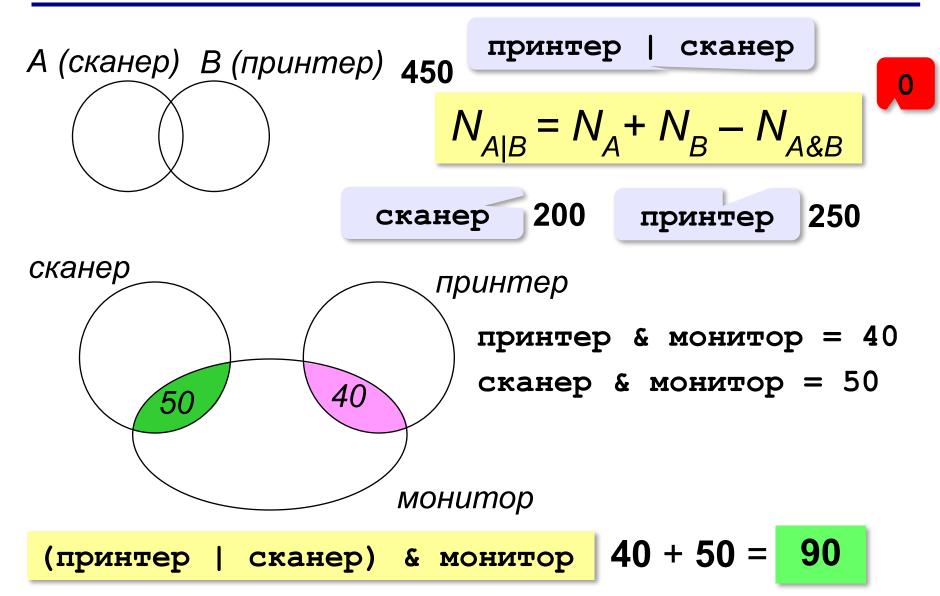
Известно количество сайтов, которых находит поисковый сервер по следующим запросам:

Запрос		Количество сайтов
собаки & лемуры В		320
кошки & лемуры	ALB	280
(кошки собаки) & ле	муры	430

Сколько сайтов будет найдено по запр А & В собаки & кошки & лемуры

Общее условие с & можно отбросить!

$$N_{A\&B} = N_A + N_B - N_{A|B} = 320 + 280 - 430 = 170$$


Известно количество сайтов, которых находит поисковый сервер по следующим запросам:

Запрос	Количество с <mark>айто</mark> в	
сканер	200	
принтер	250	
монитор	450	
принтер сканер	450	
принтер & монитор	40	
сканер & монитор	50	

Сколько сайтов будет найдено по запросу (принтер | сканер) & монитор

Обычно две области не пересекаются!

Конец фильма

ПОЛЯКОВ Константин Юрьевич

д.т.н., учитель информатики ГБОУ СОШ № 163, г. Санкт-Петербург kpolyakov@mail.ru

ЕРЕМИН Евгений Александрович

к.ф.-м.н., доцент кафедры мультимедийной дидактики и ИТО ПГГПУ, г. Пермь

eremin@pspu.ac.ru

Источники иллюстраций

- 1. иллюстрации художников издательства «Бином»
- 2. авторские материалы