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6.1 Introduction

Consider a basis § = {u,u,, ..., u,} of a vector space V over a field K. For any vector v € V, suppose

v=au; +au,+---+a,u,

Then the coordinate vector of v relative to the basis S, which we assume to be a column vector (unless
otherwise stated or implied), is denoted and defined by

[v]¢ = [ay,a,, ... ,a,,]T

Recall (Section 4.11) that the mapping v [v],, determined by the basis S, is an isomorphism between V
and K",

This chapter shows that there is also an isomorphism, determined by the basis S, between the algebra
A(V) of linear operators on V' and the algebra M of n-square matrices over K. Thus, every linear mapping
F:V — V will correspond to an n-square matrix [F']; determined by the basis S. We will also show how
our matrix representation changes when we choose another basis.




6.2 Matrix Representation of a Linear Operator

Let 7 be a linear operator (transformation) from a vector space V into itself, and suppose
S = {uy,us,...,u,} is a basis of V. Now T(u;), T(u,),...,T(u,) are vectors in V, and so each is a
linear combinanon of the vectors in the basis S; say,

T(uy) = ayuy + apuy + -+ + agu,

T(uy) = asyuy + aru, + - -+ + a1,

T(_un) = d, U g a,pliy + -+ a,u,
The following definition applies.

DEFINITION: The transpose of the above matrix of coefficients, denoted by m(T') or [T], is called
the matrix representation of T relative to the basis §, or simply the matrix of 7 in the
basis S. (The subscript § may be omitted if the basis S is understood.)

Using the coordinate (column) vector notation, the matrix representation of 7 may be written in the
form

mg(T) = [T]g = [[T(“l)]s’ [T(us)lgs -- -5 [T(ul)]s]

That is, the columns of m(T’) are the coordinate vectors of 7'(u;), T(u>), ..., T(u,), respectively.




EXAMPLE 6.1 Let F: R> — R? be the linear operator defined by F(x,y) = (2x + 3y, 4x — 5y).

— (a) Find the matrix representation of F relative to the basis S = fu ) = {(1,2), (2,5)}

(1) First find F(u,), and then write it as a linear combination of the basis vectors u#, and u,. (For notational
convenience, we use column vectors.) We have

o =r(la]) = e =+a] 5] e XI5Z

Solve the system to obtain x = 52, y = —22. Hence, F(u;) = 52u; — 22u,.

(2) Next find F(u,), and then write it as a linear combination of u; and u,:

2 19 1 2 x+2y= 19
S A AR

Solve the system to get x = 129, y = —55. Thus, F(u,) = 1294, — 55u,.
Now write the coordinates of F(u,) and F(u,) as columns to obtain the matrix

52 129

(b) Find the matrix representation of F relative to the (usual) basis £ = {e,;,e,} = {(1,0), (0,1)}.
Find F(e,) and write it as a linear combination of the usual basis vectors e; and e,, and then find F(e,) and
write it as a linear combination of ¢; and e,. We have

F(e;) =F(1,0) =(2,2) =2e;+4e,

2 3
Fles) = F(0,1) =13 ~S) =3¢y 5z O [F]’f:[ ]

4 -5

—— Note that the coordinates of F(e;) and F(e,) form the columns, not the rows, of [F ]E. Also, note that the

. > . X . - n o)
arithmetic 1s much simpler using the usual basis of R~.




EXAMPLE 6.2 Let J/ be the vector space of functions with basis § = {sint,cost,e*}, and let D: V' — V

be the differential operator defined by D( f'(¢)) = d( f(¢))/dt. We compute the matrix representing Din =

the basis S:

D(sint) = cost= O(sint) + 1(cost) + 0(e’t)
D(cos t) = —sint = —1(sint) + O(cost) + 0(e*)
D(e*)= 3¢ = 0(sin?) +0(cost) + 3(e*)

and so [B) = 14

- -0 0 3-

Note that the coordinates of D(sin¢), D(cos¢), D(¢*') form the columns, not the rows, of [D].

Matrix Mappings and Their Matrix Representation

Consider the following matrix 4, which may be viewed as a linear operator on R*, and basis S of R*:

T R Y

(We write vectors as columns, because our map is a matrix.) We find the matrix representation of 4
- relative to the basis S.




(1) First we write 4(u,) as a linear combination of «; and u,. We have
13 =21 _[-1]__|1 2 X+2y=
A0n)= [4 —5] 2] - [—6] "‘[2] +~"[5] WIS et By

| Solving the system yields x = 7, y = —4. Thus, 4(u;) = Tu; — 4u,.
% (2) Next we write 4(u,) as a linear combination of #; and u,. We have e

_ I3 =2Z] 2 _ -2 =]} | 2 x+2y=—4
aw) =3 S|[5]=[3] =) 5] me SIDI5 = .

Solving the system yields x = —6, y = 1. Thus, 4(u,) = —6u, + u,. Writing the coordinates of
A(u,) and 4(u,) as columns gives us the following matrix representation of A:

s=| 3 73]

Remark: Suppose we want to find the matrix representation of A4 relative to the usual basis
E = {e;,e;} ={[1,0]", [0,1]"} of R%. We have

—

I
I
=)

ser=[3 2][}] = [2] e 2o
s 2"0‘ 7 , and so [A]Ezli ::,52]

ww Note that [4], is the original matrix A. This result is true in general: T



Note that [4], is the original matrix 4. This result is true in general:

The matrix representation of any n x n square matrix 4 over a field K relative to the
usual basis E of K” is the matrix A itself; that is,

[A]E =4

Algorithm for Finding Matrix Representations

Next follows an algorithm for finding matrix representations. The first Step 0 is optional. It may be useful
~ to use it in Step 1(b), which is repeated for each basis vector.

ALGORITHM 6.1: The imput is a linear operator 7 on a vector space V and a basis
' = {uy, Uy, ...,u,} of V. The output is the matrix representation [77s.

Step 0. Find a formula for the coordinates of an arbitrary vector v relative to the basis S.
Step 1. Repeat for each basis vector u; in S:
(a) Find T(u,;).

(b) Write 7(u;) as a linear combination of the basis vectors u,,u5,...,u

n*
Step 2. Form the matrix [7]; whose columns are the coordinate vectors in Step 1(b).

EXAMPLE 6.3 Let : R — R? be defined by F(x,y) = (2x + 3y, 4x — 5y). Find the matrix representa-
tion [F| of F relative to the basis S = {u;,u,} = {(1,-2), (2,-5)}.

(Step 0) First find the coordinates of (a,b) € R? relative to the basis S. We have

@l 1 - 2 - X+2y=a = X+2y=a
2 s [ e [ —2x—5y="b —y=2a+b




Solving for x and y in terms of @ and b yields x = 5a + 2b, y = —2a — b. Thus,
(a,b) = (5a + 2b)u; + (—2a — b)u,

(Step 1) Now we find F(u,) and write it as a linear combination of u, and u, using the above formula for (a, b),
and then we repeat the process for F(u,). We have

F(u) =F(1,-2) = (—4,14) = 8u, — 6u,
F(u,) = F(2,-5) =(-11,33) = 11u; — 11u,

(Step 2) Finally, we write the coordinates of F(u,) and F(u,) as columns to obtain the required matrix:

M= ¢ 1]




Properties of Matrix Representations

This subsection gives the main properties of the matrix representations of linear operators 7 on a vector
space V. We emphasize that we are always given a particular basis S of V.

Our first theorem, proved in Problem 6.9, tells us that the ““action” of a linear operator 7" on a vector v
is preserved by its matrix representation.

THEOREM 6.1: Let 7: V — V be a linear operator, and let S be a (finite) basis of V. Then, for any
vector v in V, [T]¢[v]¢ = [T(v)]s.

EXAMPLE 6.4 Consider the linear operator F on R? and the basis S of Example 6.3; that is,
F(x,y) = (2x+ 3y, 4x—5y) and S ={u,u} ={(1,-2), (2,-5)}

Let
v=(5,-7), and so F(v) = (—11,55)

Using the formula from Example 6.3, we get
[v] =[11,-3]" and  [F(v)] =[55,-33]"
We verify Theorem 6.1 for this vector v (where [F| is obtained from Example 6.3):

A= s ][ 5] =53] = e




Given a basis § of a vector space V', we have associated a matrix [7] to each linear operator 7 in the
algebra A(V) of linear operators on V. Theorem 6.1 tells us that the “‘action’” of an individual linear
operator 7 is preserved by this representation. The next two theorems (proved in Problems 6.10 and 6.11)
tell us that the three basic operations in A(}V) with these operators—namely (i) addition, (ii) scalar
multiplication, and (i11) composition—are also preserved.

THEOREM 6.2: Let V' be an n-dimensional vector space over K, let § be a basis of V, and let M be
the algebra of n x n matrices over K. Then the mapping

m:A(V) - M defined by  m(T) = [T

is a vector space isomorphism. That is, for any F,G € A(V) and any k € K, .

(i) m(F+ G)=m(F)+m(G) or [F+G]|=[F]+ [G]
(i) m(kF) =km(F) or [kF] = k|F]
(111) m 1s bijective (one-to-one and onto).

THEOREM 6.3:  For any linear operators F,G € A(V),
m(Go F) = m(G)m(F) or [GoF| = [G][F]

(Here G o F denotes the composition of the maps G and F.)




6.3 Change of Basis

Let V' be an n-dimensional vector space over a field K. We have shown that once we have selected a basis
S of V, every vector v € V' can be represented by means of an n-tuple [v] in K”, and every linear operator
T in A(V') can be represented by an n x n matrix over K. We ask the following natural question:

How do our representations change if we select another basis?

In order to answer this question, we first need a definition.

DEFINITION:

Let S = {u,,u,,...,u,} be a basis of a vector space V, and let 8’ = {v,,v5,...,7,}
be another basis. (For reference, we will call § the ““old” basis and S’ the ‘‘new”’
basis.) Because S is a basis, each vector in the ‘‘new’’ basis S’ can be written uniquely

as a linear combination of the vectors in S; say,

Uy = anuy + apury + - -+ ay U,
Uy = Ay Uy + Ayt + - - + a5, U,
Up = Auly + ayly + - -- + a,,u,
Let P be the transpose of the above matrix of coefficients; that is, let P = [p, ], where

pij = a;;. Then P is called the change-of-basis matrix (or transition matrix) from the
“‘old” basis S to the “‘new’’ basis 5.




The following remarks are in order.

Remark 1: The above change-of-basis matrix P may also be viewed as the matrix whose columns
are, respectively, the coordinate column vectors of the ‘‘new’’ basis vectors v, relative to the ““old’” basis
S; namely,

P = [[-1,,'1]5.’ [7"2]57 sy ['Un]S]

Remark 2: Analogously, there is a change-of-basis matrix Q from the ‘“‘new’’ basis S’ to the
““old” basis S. Similarly, Q may be viewed as the matrix whose columns are, respectively, the coordinate
column vectors of the ““old”” basis vectors u; relative to the ‘‘new” basis S’; namely,

Q = [[ul]sr’ [llz]y, ..y [l'lll]sl]
Remark 3: Because the vectors v;,v,,..., v, in the new basis S’ are linearly independent, the

matrix P is invertible (Problem 6.18). Similarly, Q is invertible. In fact, we have the following
proposition (proved in Problem 6.18).

PROPOSITION 6.4: Let P and Q be the above change-of-basis matrices. Then Q = P,

Now suppose S = {u;,u,,...,u,} is a basis of a vector space V, and suppose P = [p;] is any
nonsingular matrix. Then the n vectors

V; = Pyl +Darithy + - - - + Ppithy, Jim o Do

corresponding to the columns of P, are linearly independent [Problem 6.21(a)]. Thus, they form another
basis S” of V. Moreover, P will be the change-of-basis matrix from S to the new basis §'.




EXAMPLE 6.5 Consider the following two bases of R?:
S =Jup 1} =1(1;2); (3;5)} and "= {v,n} ={Q1,-1), (1,-2)}

(a) Find the change-of-basis matrix P from S to the “‘new’’ basis §'.
Write each of the new basis vectors of S’ as a linear combination of the original basis vectors u; and u, of
S. We have

¥ N 8] x+3y=1 - - .
g | =2 2 +y il or Sy e yielding x=—8, y=3
1] [1 3] x+3y=1 sy . ] ,
13 -x.2~ +)..-5~ Spepohy o yielding x=-—11, y=4
Thus,
'Ul — —8u1 +3ll_7_

-8 -—11
and hence, P= :

vy = —11u; + 4u, 3 +

Note that the coordinates of v, and v, are the columns, not rows, of the change-of-basis matrix P.

(b) Find the change-of-basis matrix Q from the *‘new’’ basis S’ back to the “‘old’” basis S.
Here we write each of the “*old”” basis vectors u, and u, of §’ as a linear combination of the ‘‘new’’ basis
vectors v; and v, of §'. This yields

u, = 4v, — 3v,
u, = 1lv; — 8v,

and hence, 0= [_‘31 _l:;]

As expected from Proposition 6.4, Q = P~'. (In fact, we could have obtained Q by simply finding P~'.)




EXAMPLE 6.6 Consider the following two bases of R*:

(a)

(b)

E= {81,82,83} E {(1*0~O)~ (O~ 1’0)5 (0,0. l)}
and S=1u;th;u} =4(1,0,1);, (2;1,2); 11,2,2)}

Find the change-of-basis matrix P from the basis E to the basis S.
Because E is the usual basis, we can immediately write each basis element of S as a linear combination of
the basis elements of E. Specifically,

uy =(1,0,1) = ¢ + €3 1
u, =(2,1,2) =2e, + e, +2e; and hence, P=10
u; =(1,2,2) = e, + 2e, +2e; 1

.

o = N
[ I S

Again, the coordinates of u,,u,,u; appear as the columns in P. Observe that P is simply the matrix whose
columns are the basis vectors of S. This is true only because the original basis was the usual basis E.

Find the change-of-basis matrix Q from the basis S to the basis E.
The definition of the change-of-basis matrix Q tells us to write each of the (usual) basis vectors in £ as a
linear combination of the basis elements of S. This yields

e; = (1,0,0) = —2u; + 2u, — uy -2 -2 3
e, =(0,1,0) = —2u; + u, and hence, 0= 2 1 -2
e; =(0,0,1) = 3uy — 2u, + uy -1 0 1

We emphasize that to find O, we need to solve three 3 x 3 systems of linear equations—one 3 x 3 system for
each of e, e,, e;3.




Alternatively, we can find Q = P! by forming the matrix M = [P,]] and row reducing M to row
canonical form:

1 2 ) 1L 9 1 0 0 -2 -2 3
M=10 1 2 9 1 Ql~)|¢ L1 2 1 =2| =[I,P] e
1 2 2 U 0 1] 9 O 1 I 0 iy
(-2 =2 3]
thus, O=P'= 2 1 -2
| —1 0 i .

(Here we have used the fact that Q 1s the inverse of P.)

The result in Example 6.6(a) is true in general. We state this result formally, because it occurs often.

PROPOSITION 6.5:  The change-of-basis matrix from the usual basis £ of K” to any basis § of K" is
the matrix P whose columns are, respectively, the basis vectors of S.




Applications of Change-of-Basis Matrix

First we show how a change of basis affects the coordinates of a vector in a vector space V. The
following theorem is proved in Problem 6.22.

THEOREM 6.6:  Let P be the change-of-basis matrix from a basis S to a basis S’ in a vector space V.
Then, for any vector v € V, we have

Plly =[]y  andhence,  P~'[u]s = [ol

Namely, if we multiply the coordinates of v in the original basis S by P~!, we get the coordinates of v
in the new basis S'.

Remark 1: Although P is called the change-of-basis matrix from the old basis S to the new basis
S’, we emphasize that P! transforms the coordinates of v in the original basis S into the coordinates of v
in the new basis .

Remark 2: Because of the above theorem, many texts call QO = P!, not P, the transition matrix
from the old basis S to the new basis S’. Some texts also refer to Q as the change-of-coordinates matrix.




~ We now give the proof of the above theorem for the special case that dim V' = 3. Suppose P is the
change-of-basis matrix from the basis § = {u,, u,, u;} to the basis §" = {v,, v,, v3}; say,

'Ul = alul + azuz + a3a3 al bl Cl
[25) blul + bp_tlz + b3u3 and hence, P= a> b2 Cr
U3 Ciuiy + Crlr + CiyU3 ay b3 C3

Now suppose v € V and, say, v = k;v; + k,v, + kyvy. Then, substituting for v, v,, v; from above, we
obtain

v = ky(ayuy + ayus + azuy) + ka(byuy + bauy + byusz) + ky(cyuy + cour + c3us)
= (a1ky + biky + c\k3)uy + (axky + byky + crk3 )uy + (asky + byky + cykz)uy

Thus,
ky ayky + biky + ¢,k
[”]s' = | k and [”]s = | ayk; + byky + crk;
ks azky + bsky + c3k;
Accordingly,

a bl < kl alkl + blk2 + Clk3
Pllg = |ay by o | |k | = | axky + brky + c2ky | = [v]g
a b3 C3 k3 a3k1 + b3k2 “+- C3k3

Finally, multiplying the equation [v]¢ = P[v]¢, by P~!, we get
P '[v]g = P P[v)g =I[v]g = [v]g




The next theorem (proved in Problem 6.26) shows how a change of basis affects the matrix
representation of a linear operator.

THEOREM 6.7:  Let P be the change-of-basis matrix from a basis S to a basis S’ in a vector space V.
Then, for any linear operator 7" on V,

[T]s' = P_I[T]SP

That is, if 4 and B are the matrix representations of 7 relative, respectively, to S and
S’, then

B=P'l4pP




EXAMPLE 6.7 Consider the following two bases of R*:

E ={e,,e,,e;} = {(1,0,0), (0,1,0), (0,0,1)}
and S = {lll,l-lz,ll3} - {(1,0 l)% (21 172)3 (1*22)}

The change-of-basis matrix P from E to S and its inverse P~' were obtained in Example 6.6.

(a) Write v = (1,3,5) as a linear combination of u, u,, u3, or, equivalently, find [v|,.
One way to do this is to directly solve the vector equation v = xu; + yu, + zuy; that 1s,

| | 2 | x+2p+ z=1
3| =x|0]|+y|1l]|+2z|2 or y+2z=3
5 1 2 2 X+2+2z=35
The solutionis x=7, y=-5, z=4, sov=Tu; — Su, +4u,.

On the other hand, we know that [v], = [1, 3, 5]‘1‘, because E is the usual basis, and we already know P!,
Therefore, by Theorem 6.6,

-2 =2 3 | ¥
[v]g = p! [vlz = 2 1 =2 3|l =1|-5
—1 0 ] 5 4

Thus, again, v = Tu; — Su, + 4u,.




N 1 3 -2
(b) LetA = [2 —4 l ] , which may be viewed as a linear operator on R*. Find the matrix B that represents A
3 -1 2

relative to the basis S.

The definition of the matrix representation of A relative to the basis S tells us to write each of A(u, ), A(u,),
A(uy) as a linear combination of the basis vectors u,, u,, u; of S. This yields

A(w) = (—1,3,5) = 11u; — 5u, + 6u, oty 21
Aluy) = (1,2,9) = 21u; — 14u, + 8uy and hence, B=|-5 -14 -8
A(ll3) — (3. _4, 5) — l7ll] - 882 + 2u3 i 6 8 2_

We emphasize that to find B, we need to solve three 3 x 3 systems of linear equations—one 3 x 3 system for
cach of A(u;), A(u,), A(us).
On the other hand, because we know P and P!, we can use Theorem 6.7. That is,

=D 33 WIFEE % <21 F 2 3 i 91 9
B=PlaPp=| 2 F 2012 & il d 2)=1-5 —1f 8
=3 i RS <k 200E 2. 2 6 g D

™ This, as expected, gives the same result.




6.4 Similarity

Suppose 4 and B are square matrices for which there exists an invertible matrix P such that B = P~'4P;
then B is said to be similar to A, or B is said to be obtained from 4 by a similarity transformation. We
show (Problem 6.29) that similarity of matrices is an equivalence relation.

By Theorem 6.7 and the above remark, we have the following basic result.

THEOREM 6.8: Two matrices represent the same linear operator if and only if the matrices are
similar.

That is, all the matrix representations of a linear operator 7 form an equivalence class of similar
matrices.

A linear operator 7 is said to be diagonalizable if there exists a basis S of V' such that 7 is represented
by a diagonal matrix; the basis § is then said to diagonalize T. The preceding theorem gives us the
following result.

THEOREM 6.9: Let 4 be the matrix representation of a linear operator 7. Then T is diagonalizable
if and only if there exists an invertible matrix P such that P~'AP is a diagonal
matrix.

That is, 7 is diagonalizable if and only if its matrix representation can be diagonalized by a similarity
transformation.

We emphasize that not every operator is diagonalizable. However, we will show (Chapter 10) that
every linear operator can be represented by certain ‘‘standard’” matrices called its normal or canonical
forms. Such a discussion will require some theory of fields, polynomials, and determinants.




Functions and Similar Matrices

Suppose f i1s a function on square matrices that assigns the same value to similar matrices; that is,
f(A4) = f(B) whenever 4 is similar to B. Then / induces a function, also denoted by f, on linear operators
T in the following natural way. We define

f(T) :f([T]s)

where S is any basis. By Theorem 6.8, the function is well defined.
The determinant (Chapter 8) is perhaps the most important example of such a function. The trace
(Section 2.7) is another important example of such a function.

EXAMPLE 6.8 Consider the following linear operator / and bases £ and S of R*:

F(x,y) = (2x + 3y, 4x — 5y), E={(1,0), (0,1)}; &= {(1,2¥;. (2:5)}

By Example 6.1, the matrix representations of F relative to the bases £ and S are, respectively,

2 3 52 129
A—[4 —5] and B_[—zz —55]

Using matrix A, we have
(i) Determinant of F = det(4) = —10 — 12 = -22; (i1) Traceof F =tr(4) =2 -5 = 3.

On the other hand, using matrix B, we have

(i) Determinant of F = det(B) = —2860 + 2838 = —22; (11) Trace of F = tr(B) = 52 — 55 = 3.

As expected, both matrices yield the same result.



6.5 Matrices and General Linear Mappings

Last, we consider the general case of linear mappings from one vector space into another. Suppose V' and
U are vector spaces over the same field K and, say, dim V' = m and dim U = n. Furthermore, suppose

S = {v1,05,...sUp} and S =5 o

are arbitrary but fixed bases, respectively, of V' and U.
Suppose F: V' — U is a linear mapping. Then the vectors F(v,), F(v,), ..., F(v,) belong to U,
and so each is a linear combination of the basis vectors in S’; say,

F('U]) = ayp ) + apuy + -+ aypu,
F('Uz) = dy -+ ar» s —isisin = ar,U,

F (“"‘m) = Aty + Applly + - - -+ ay,U,
DEFINITION: The transpose of the above matrix of coefficients, denoted by mg ¢ (F) or [F|¢ g, is
called the matrix representation of F relative to the bases S and S’. [We will use the
simple notation m(F') and [F] when the bases are understood.]

The following theorem is analogous to Theorem 6.1 for linear operators (Problem 6.67).

THEOREM 6.10:  For any vector v € V, [Fl¢ o[v]¢ = [F(v)]¢.




That is, multiplying the coordinates of v in the basis S of V' by [F]|, we obtain the coordinates of F'(v)
in the basis S’ of U.

Recall that for any vector spaces V' and U, the collection of all linear mappings from V into U is a
vector space and is denoted by Hom(V, U). The following theorem is analogous to Theorem 6.2 for linear
operators, where now we let M = M_  denote the vector space of all m x n matrices (Problem 6.67).

mn

THEOREM 6.11:  The mapping m: Hom(V,U) — M defined by m(F) = [F] is a vector space
isomorphism. That is, for any ', G € Hom(V, U) and any scalar &,

(i) m(F + G) =m(F)+ m(G) or [F+G]=[F]+|[G]
(i) m(kF) = km(F) or [kF] = k[F]
(111) m 1s bijective (one-to-one and onto).

Our next theorem is analogous to Theorem 6.3 for linear operators (Problem 6.67).

THEOREM 6.12:  Let §,5,S” be bases of vector spaces V, U, W, respectively. Let F: V' — U and
G o U — W be linear mappings. Then

[G O F]S.S” P [G]~S’”~S"’ [F]S.S'

That is, relative to the appropriate bases, the matrix representation of the composition of two
mappings is the matrix product of the matrix representations of the individual mappings.

Next we show how the matrix representation of a linear mapping F: V' — U 1is affected when new

wwbases are selected (Problem 6.67). PO




THEOREM 6.13: Let P be the change-of-basis matrix from a basis e to a basis ¢ inV, and let O be: s SIERY
the change-of-basis matrix from a basis /" to a basis /” in U. Then, for any linear |
map F:V — U,

[F ]e'__f' x> Q_I[F ]e__/‘P

In other words, if 4 is the matrix representation of a linear mapping F relative to the bases e and £,
and B is the matrix representation of F relative to the bases ¢’ and /7, then

B=0Q'4pP

into another vector space U can be represented by a very simple matrix. We note that this theorem is

Our last theorem, proved in Problem 6.36, shows that any linear mapping from one vector space V
- analogous to Theorem 3.18 for m X n matrices.

THEOREM 6.14:  Let F: V' — U be linear and, say, rank(F') = r. Then there exist bases of V' and U
such that the matrix representation of /' has the form

I, 0
= [0 0]

where /. 1s the r-square identity matrix.

The above matrix A4 is called the normal or canonical form of the linear map F.
——_ S S ——




