
Lesson № 2
Subject: A program structure of a BORLAND C++ programming language

The purpose of the lecture is to learn the structure of a program and basic I/O
functions in C++ programming language

A structure of a program
A program in C++ programming language consists of functions, descriptions and directives.

One of the functions should have name main. The execution of the program begins with the first
statement of this function.

The simplest definition of a function has the following format:

return_type name_of_a_function ([parameters])
{a body of a function ;}

For example,
void main () //void is a return type main is the name of a program
{

cin<<a; // this is the body of a function
}

Input/Output functions
There is no built-in input/output functions in

C++ programming language. It is
implemented using subroutines, types and
objects contained in standard libraries:

ANSI С <stdio.h >
C++ < iostream.h >

Basic I/O functions in a C style:
□ int scanf (const char* format...) //input
□ printf(const char* format...) //output
They perform formatted input and output of an arbitrary

number of values in accordance with the format string.
The format string contains characters that are copied to the

stream (on the screen) when being output, or are requested
from the stream (from the keyboard) upon input, and
conversion specifications starting with the % character, which
are replaced with specific values upon input and output .

Input/Output functions

Example
#include <stdio.h>

int main()
{ int i;

printf(“Enter number\n"); scanf("%d", &i);
printf(“You‘ve entered a number%d, thanks!", i);

}

And here is what the same program looks like using the
BORLAND C ++ class library <iostream.h>

#include <iostream.h>
int main()
{ int i;

cout << “Enter number\n";
cin >> i;
cout << “You’ve entered a number “<< i << ", thanks!";

}

Input/Output functions

Basic data types in BORLAND C++:
Data type A Size (in bytes) Value range

char 1 -128..127

unsigned char 1 0..255

short 2 -32768..32767

unsigned short 2 0..65535

long 4 -2147483648..2147483647

unsigned long 4 0..4294967295

int 4 -2147483648..2147483647

unsigned int 4 0..4294967295

float 4 3.4*10-38..3.4*1038

double 8 1.7*10-308..1.7*10308

long double 10 3.4*10-4932..1.1*104932

bool 1 true or false

Named constants
A named constant is a constant that has a name. A named constant is exactly

like a variable, except that its value is set at compile time (by initializing
it) and CANNOT change at runtime.

Declaring a named constant is a pointer to the compiler to replace (in the entire
text – in a program) this identifier with a constant value .

Constants are added with a keyword const:
const type name_of_a_constant = value;
For example:
const float Pi = 3.14159;
For integer constants, the type can be omitted. The type must be specified for

all other constants.
For example, the next definition
const Pi = 3,14159;
assign a value 3 to the constant Pi.

Declaration of variables
The declaration of a variable has the form:

type list_of_identifiers;
A list of identifiers may consist of variable identifiers, separated

by commas.
For example: int x1, x2;

Simultaneously with the declaration, some or all of the variables
can be initialized.

For example :
int xl=1, х2=2;
The declaration of variables can be a separate operator or be done

inside of such operators, as, for example, a cycle operator:
for (int i=0; i<10; i++)

Task
Two real numbers are given. Find the sum,
difference and product of them

