ЛЕКЦИИ 1

Основные положения технической термодинамики

КУРС ЛЕКЦИЙ ОБЩАЯ ЭНЕРГЕТИКА д.т.н. проф. Е.В. Барочкин

ПЛАН ЛЕКЦИИ

План лекции

- 1. Основные положения технической термодинамики
- 1.1. Предмет и метод технической термодинамики
- 1.2. Рабочее тело и основные параметры состояния рабочего тела
- 1.3. Основное уравнение идеального газа
- 1.4. Внутренняя энергия тела
- 1.5. Первый закон термодинамики
- 1.6. Энтальпия идеального газа
- 1.7. Энтропия
- 1.8. Тепловая T, s диаграмма
- 1.9. Круговые процессы или циклы
- 1.10. Цикл Карно
- 1.11. Свойства рабочего тела
- 1.12. Конденсация пара
- 1.13. Связь температуры насыщения с давлением
- 1.14. T,S-диаграмма воды и водяного пара
- 1.15. Тепловая h, s диаграмма воды и водяного пара
- 1.16. Свойства водяного пара как рабочего тела

1.1. Предмет и метод технической термодинамики

Техническая термодинамика составляет один из разделов теоретических основ теплотехники.

Термодинамика – это наука об энергии и энергетических преобразованиях. Первоначально она создавалась как наука о преобразовании теплоты в механическую работу в тепловых машинах. Современная термодинамика изучает превращения энергии во всех её формах. Переход энергии от одного тела к другому и все превращения форм энергии происходят при взаимодействии тел. Количественной мерой взаимодействия является работа (механических сил, электрических сил и т.д.). Теплота также является мерой энергетических взаимодействий.

Большую роль в процессе совершенствования работы играют газ либо пар – рабочие тела в двигателе. В соответствии с условиями изменения состояния рабочего тела и его энергетического взаимодействия с окружающей средой в технической термодинамике изучаются термодинамические системы, а также термодинамические процессы или изменения состояния термодинамической системы. При этом устанавливаются соотношения между физическими величинами, которые характеризуют систему и изменение её состояния.

1.2. Рабочее тело и основные параметры состояния рабочего тела

Рабочими телами в двигателях для преобразования тепловой энергии в механическую служат газы и пары различных жидкостей.

Газообразное тело вследствие способности к большому расширению при нагревании является наиболее удобным для использования в качестве рабочего тела при превращении в работу теплоты, сообщаемой телу извне. Принципиальных различий между газом и паром нет. Для каждого газа существует некоторый температурный предел, так называемая критическая температура, выше которой никаким повышением давления газ не может быть превращен в жидкое состояние. Обычно газом считают и пар при температуре выше его критической температуры. Изменение состояния газа происходит в результате сообщения или отбора тепла или от внешних механических воздействий.

Состояние рабочего тела определяется совокупностью термодинамических параметров, основными из которых являются давление p, температура T и удельный объём θ . В общем виде уравнение состояния рабочего тела может быть представлено в виде функциональной зависимости $f(p, \theta, T) = 0$. Это уравнение можно также выразить в виде

$$p = f_1(T, \vartheta);$$
 $\vartheta = f_2(p, T);$ $T = f_3(p, \vartheta).$

1.3. Основное уравнение идеального газа

Уравнение состояния идеальных газов было получено в 1834 г. Клапейроном на основании опытных законов Бойля – Мариотта и Гей-Люссака. Уравнение Клапейрона содержит константу, зависящую от природы газа и потому не являющуюся универсальной

Для 1 кг идеального газа уравнение состояния имеет вид:

 $p\theta = RT$,

где R – газовая постоянная для 1 кг данного газа, Дж/кг · град;

- p давление, H/M^2 (Πa);
- ϑ удельный объём, м $^3/\kappa z$; T абсолютная температура, К.

Уравнение, выведенное Клапейроном, содержало некую <u>неуниверсальную</u> газовую постоянную R значение которой необходимо было измерять для каждого газа.

Менделеев обнаружил, что величина R_{μ} прямо пропорциональна μ – молекулярной массе газа. Менделеев ввел в уравнение Клапейрона коэффициент пропорциональности R_{μ} и назвал его <u>универсальной газовой постоянной</u>

5

1.3. Основное уравнение идеального газа

По закону Авогадро 1 кмоль идеального газа любого химического состава при одинаковых давлениях и температурах занимает один и тот же объем.

При давлении $p_o = 0,10133 \text{ MH/m}^2$ (760 мм рт.ст.) и температуре $T_o = 273,15 \text{ K}$ (0 °C) объем 1 кмоль идеального газа $V\mu = 22,4146 \text{ m}^3$.

Подставив эти значения в уравнение, получим величину <u>универсальной газовой постоянной</u>

$$R_{\mu} = \mu R = \begin{bmatrix} 0.10133 & 10^6 & 22.4146 \\ \hline 273.15 \end{bmatrix} = 8 \ 315$$
 (Дж/моль·град)

ТЕХНИЧЕСКОЙ ТЕРМОДИНАМИКИ

1.4. Внутренняя энергия тела

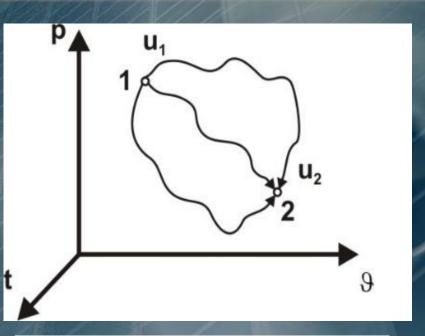


Рис. 1.2.1. Изменение внутренней энергии рабочего тела

С точки зрения молекулярно-кинетической теории под внутренней энергией тела понимается <u>сумма кинетической и потенциальной</u> энергий атомов (молекул), обусловленных:

<u>первая</u> – скоростью движения и массой частиц,

<u>вторая</u> – взаимным их расположением и силами взаимодействия.

Следовательно, каждое тело в данном состоянии обладает известной внутренней энергией, определяемой данным состоянием тела.

Другими словами, внутренняя энергия U является функцией состояния тела, точнее функцией термодинамических параметров, характеризующих состояние тела (p, ϑ , T), и, следовательно, du есть полный дифференциал этой функции, т.е. $u = f(p, \vartheta, T)$ и $du = df(p, \vartheta, T)$.

основные положения

ТЕХНИЧЕСКОЙ ТЕРМОДИНАМИКИ

1.4. Внутренняя энергия тела

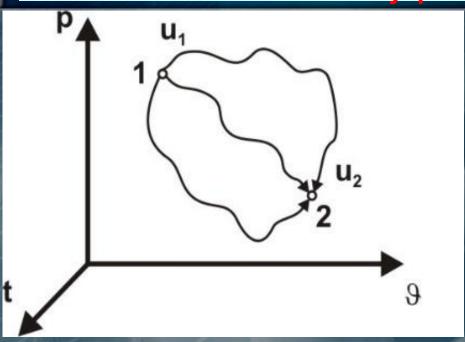
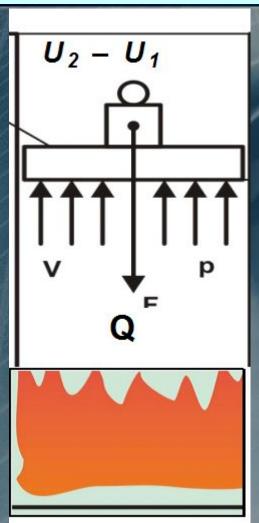


Рис. 1.2.1. Изменение внутренней энергии рабочего тела

Поэтому, при переходе тела (рис. 1.2.1) из состояния 1, определяемого величинами p_1 , θ_1 , t_1 , в состояние 2, определяемое величинами p_2 , θ_2 , t_2 , изменение внутренней энергии 1 кг тела определяется как


$$u_2 - u_1 = f(p_2, \vartheta_2, t_2) - f(p_1, \vartheta_1, t_1),$$

Таким образом, изменение внутренней энергии тела вполне определяется начальным и конечным состояниями тела и не зависит от промежуточных состояний, а следовательно, и от условий перехода тела из одного состояния в другое, или, как говорят, от характера процесса.

8

ТЕХНИЧЕСКОЙ ТЕРМОДИНАМИКИ

1.5. Первый закон термодинамики

Внутренняя энергия термодинамического тела, взаимодействующего с внешней средой, увеличивается на количество полученной им теплоты Q и уменьшается на величину совершенной телом работы расширения L, то есть

Первый закон Нермидлиймий может быть сформулирован следующим образом: теплота, сообщаемая телу, расходуется на увеличение его внутренней энергии и на работу по преодолению внешнего давления. Для одного килограмма вещества первый закон термодинамиики имеет вид:

 $q = U_2 - U_1 + \square.$

В этом уравнении все величины (*Q, U,* □) являются удельными, т. е. относятся к *1 кг* массы рабочего тела и измеряются Дж/кг

основные положения

ТЕХНИЧЕСКОЙ ТЕРМОДИНАМИКИ

1.6. Энтальпия идеального газа

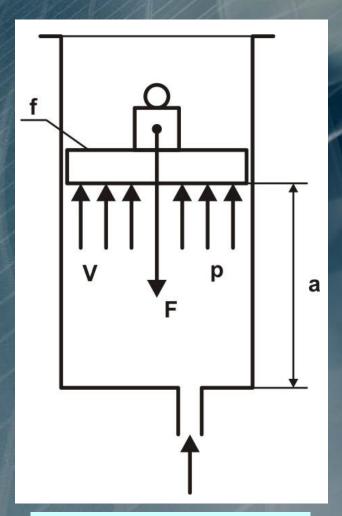


Рис. Иллюстрация энергии давления

Энтальпия иначе называется полной энергией, а ранее в технической системе единиц называлась теплосодержанием. Энтальпия представляет собой сумму внутренней энергии и энергии давления. Для одного килограмма вещества энтальпия определяется из выражения

$$h = u + p \vartheta. \quad (1.6.1)$$

Энтальпия для тела произвольной массы может быть определена как

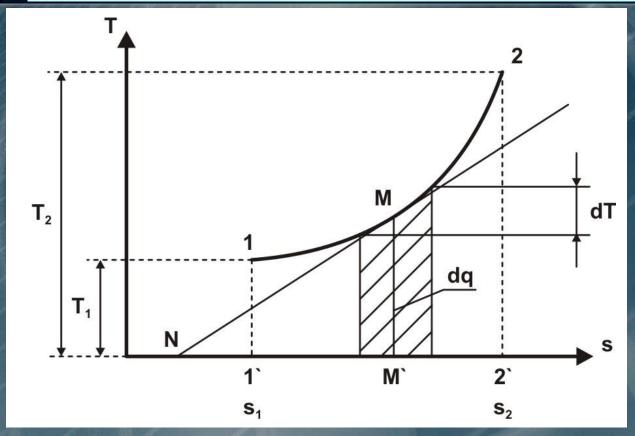
$$H = U + p V$$
 (1.6.2)

DISTRICTCENT

Таким образом, <u>полная энергия системы, включающая в себя газ и груз на поршне, представляет собой сумму внутренней энергии газа и потенциальной энергии груза, что по уравнению (1.6.2) соответствует определению энтальпии газа, поступившего в цилиндр</u>

1.7. Энтропия

В термодинамике используют еще один параметр состояния рабочего тела – энтропию, устанавливающую связь между количеством теплоты и температурой. Поясним этот параметр исходя из следующих соображений. Уравнение первого закона термодинамики можно записать в виде dq = du + pdv = du + dl.


При умножении на интегрирующий множитель 1/*T* (где *T* – абсолютная температура) приведенное выше уравнение примет вид

$$\frac{dq}{T} = \frac{du}{T} + \frac{dl}{T}$$

- 1) Энтропия мера ценности теплоты, ее работоспособности и технологической эффективности.
- 2) Энтропия мера потери работы вследствие необратимости реальных процессов. Чем более необратим процесс в изолированной системе, тем больше возрастает энтропия и тем большая доля энергии не превращается в работу, а рассеивается в окружающую среду.

ТЕХНИЧЕСКОЙ ТЕРМОДИНАМИКИ

1.8. Тепловая T, s - диаграмма

Изображение процессов в Т, s - диаграмме, названной тепловой, в некоторых случаях более наглядно и удобно, чем в р, θ – диаграмме.

Для процесса 1-2 подводимое количество теплоты в Т, s — диаграмме численно равно площади, расположенной под кривой процесса, т. е. количество подведенной теплоты равно площади 1'—1 — 2 — 2'.

Площадь под кривой процесса 1 – 2 представляет собой количество

теплоты
$$q = \int_{S_1}^{S_2} TdS$$

сообщенное телу извне, поскольку процесс связан с увеличением энтропии.

12

ТЕХНИЧЕСКОЙ ТЕРМОДИНАМИКИ

1.9. Круговые процессы или циклы

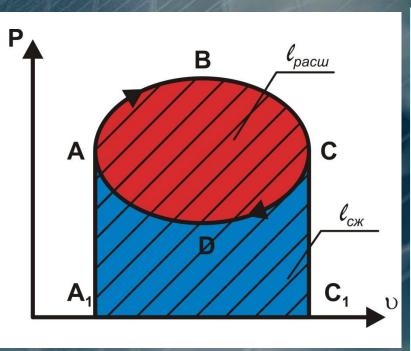


Рис.1.7. Круговой процесс в р, ϑ - диаграмме

Чтобы непрерывно производить работу в тепловом двигателе, необходимо совершение кругового процесса (рис.1.7).

Рабочее тело многократно изменяет своё состояние по замкнутой кривой A-B-C-D-A и возвращается в начальное состояние A. Таким образом, начальное и конечное состояния рабочего тела идентичны.

На участке A-B-C рассматриваемого кругового процесса рабочее тело расширяется (прямой ход) и производит при этом положительную работу расширения A-B-C-C1-A1 (заштрихованная площадь).

Эта работа совершается за счёт подвода теплоты q_1 и изменения внутренней энергии $u_C - u_A$, происходящего согласно соотношению:

$$q_1 = u_C - u_A + \Box_{pacm}.$$

1.9. Круговые процессы или циклы

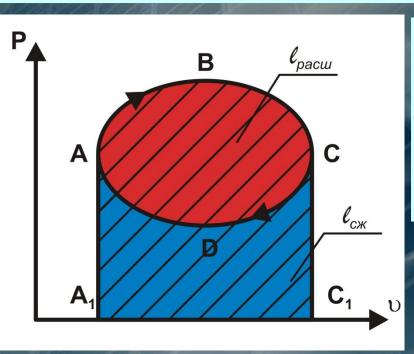


Рис.1.7. Круговой процесс в р, ϑ - диаграмме

При превращении теплоты в работу в непрерывно действующем двигателе лишь часть подведённой от горячего источника теплоты q_1 превращается в работу; остальная часть q_2 обязательно должна быть отдана в виде теплоты источнику с более низкой температурой.

Критерием для оценки теплового цикла служит КПД, представляющий собой отношение количества теплоты, превращённой в полезную работу, ко всей подведённой теплоте.

$$\eta_c = \frac{\ell}{q_1} = \frac{q_1 - q_2}{q_1} = 1 - \frac{q_2}{q_1}$$

Из этого уравнения видно, что термический КПД цикла всегда меньше единицы, т.к. величина $q_2 > 0$.

ТЕХНИЧЕСКОЙ ТЕРМОДИНАМИКИ

1.10. Цикл Карно

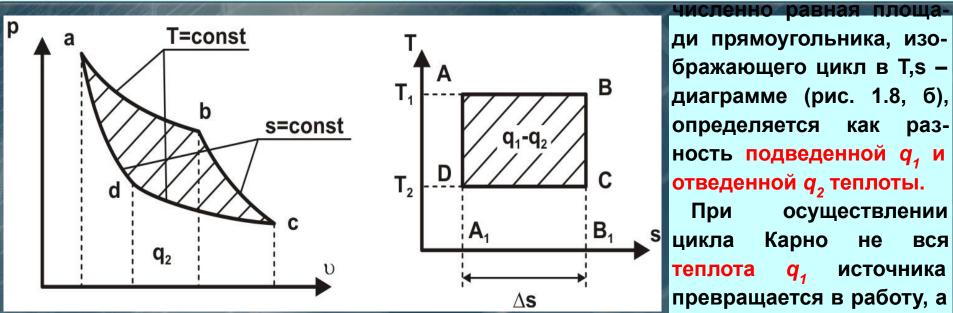


Рис.1.8. Цикл Карно в р, ϑ - диаграмме и в T,s - диаграмме

$$\eta_t^{\kappa} = \frac{\ell}{q_1} = \frac{q_1 - q_2}{q_1} = 1 - \frac{q_2}{q_1} = 1 - \frac{T_2 \Delta S}{T_1 \Delta S} = 1 - \frac{T_2}{T_1}$$

Теорема Карно: Термический коэффициент лезного действия цикла Карно зависит только от для абсолютных температур источника тепла и холо-

дильника и не зависит от свойств рабочего тела.

бражающего цикл в T,s – диаграмме (рис. 1.8, б), определяется как разность подведенной q_1 и отведенной q_2 теплоты. При осуществлении цикла Карно не ВСЯ теплота источника превращается в работу, а еë только часть $(q_1 - q_2)$, другая же часть q_2 отдается охладителю и

тэжом

целей, то есть является

тепловым отбросом

использована

получения

быть

ДЛЯ

НИ

нагревательных

работы, ни

основные положения

ТЕХНИЧЕСКОЙ ТЕРМОДИНАМИКИ

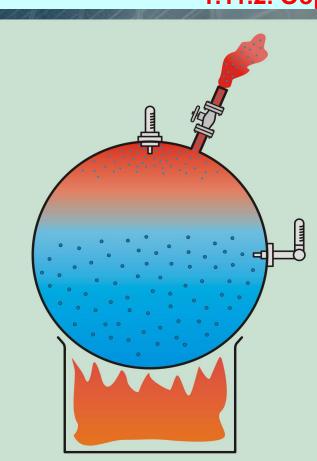
1.11. Водяной пар

1.11.1. Основные термодинамические свойства водяного пара

Рабочее тело на ТЭС – вода в агрегатных состояниях «жидкость» и «газ» (пар)

Виды водяного пара:

- 1. Сухой насыщенный пар
- 2. Влажный пар
- 3. Перегретый пар


Водяной пар как рабочее тело получил широкое применение в теплотехнике. Пар представляет собой промежуточное состояние между жидкостью и газом. При высоких температурах и низких давлениях пар по своим свойствам приближается к идеальному газу. В паровых двигателях и теплообменных аппаратах пар используется при таких давлениях и температурах, что применение к нему законов и уравнений состояния идеального газа приводит к большим неточностям при вычислениях.

Наиболее точные уравнения состояния водяного пара имеют довольно сложный вид и требуют громоздких вычислений. Поэтому при расчётах обычно применяются таблицы и диаграммы, построенные по опытным данным.

ТЕХНИЧЕСКОЙ ТЕРМОЛИНАМИКИ

1.11. Свойства рабочего тела

1.11.2. Образование сухого насыщенного пара

Чтобы понять разницу между состояниями водяного пара, рассмотрим процесс превращения воды в пар.

Нагреваем воду в сосуде при атмосферном давлении 760 мм рт. ст.

При достижении водой температуры 100 °С начинается её интенсивное кипение с образованием пара

Если в образовавшемся паре нет капелек воды (жидкой фазы), тогда пар называется *сухим насыщенным.* Температура и пара и воды будет равной 100 °C пока не выкипит вся жидкая фаза.

Эту температуру называют температурой *кипения, или температурой насыщения*, и обозначают $t_{..}$.

Тепловая энергия, расходуемая на поддержание кипения в сосуде, затрачивается на разрыв связей между молекулами воды, т.е. на ее испарение.

Молекулы испарившейся жидкости — пара обладают <u>бо́льшей</u>, чем молекулы воды, энергией на величину <u>удельной (скрытой) теплоты парообразования </u><u>г</u>, представляющей собой количество тепловой энергии, необходимой для испарения 1 кг кипящей жидкости

основные положения

ТЕХНИЧЕСКОЙ ТЕРМОДИНАМИКИ

1.11. Свойства рабочего тела

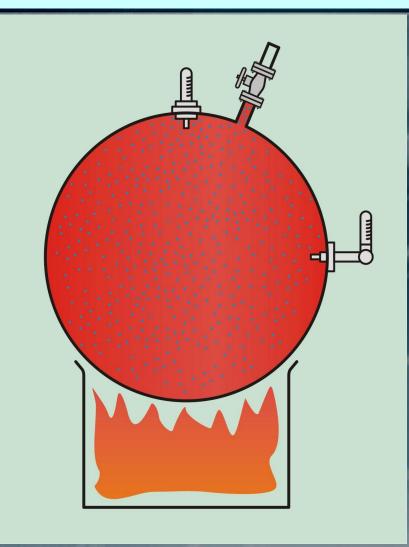
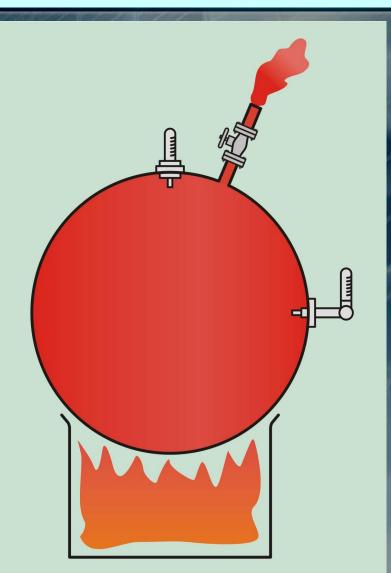


Рис. 1.6.3. Образование влажного пара

11.1.3. Образование влажного пара

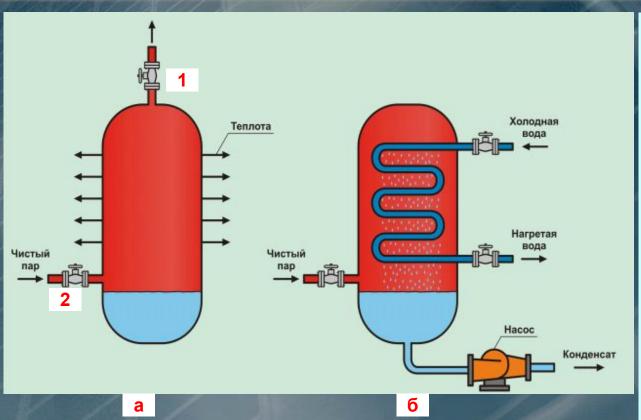

Если температуру сухого насыщен-ного пара снизить (а это можно сделать только путем одновременного снижения давления), то часть пара сконденсируется и в нем появятся капельки воды, «парящие» в объеме пара (рис. 1.6.3). Такой пар называется влажным.

Важно усвоить, что <u>темпера-тура насыщения воды</u> одно-значно определяется давлением над ее поверхностью.

основные положения

ТЕХНИЧЕСКОЙ ТЕРМОДИНАМИКИ

1.11. Свойства рабочего тела

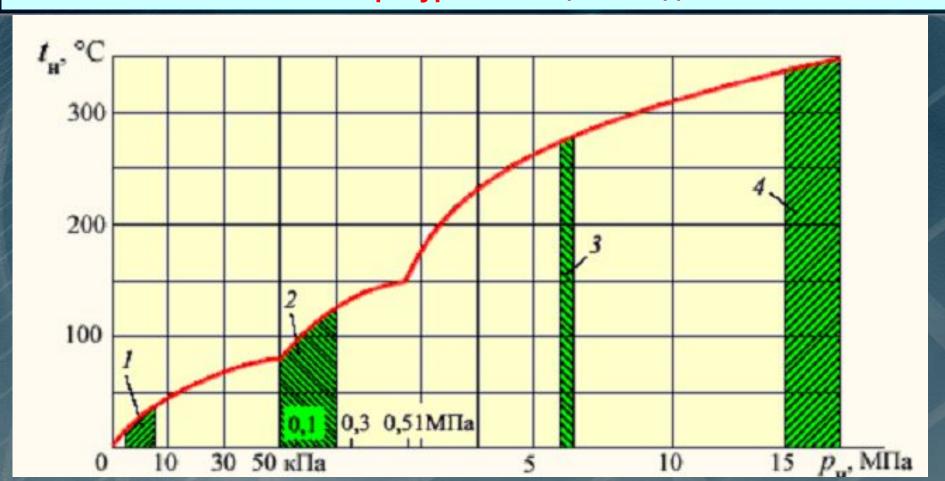


11.1.4. Образование перегретого пара

Если продолжать нагревание сухого насыщенного пара, то температура пара в сосуде будет повышаться – пар станет перегретым.

Именно перегретый пар является рабочим телом в паротурбинном цикле на <u>тепловых</u> электрических станциях.

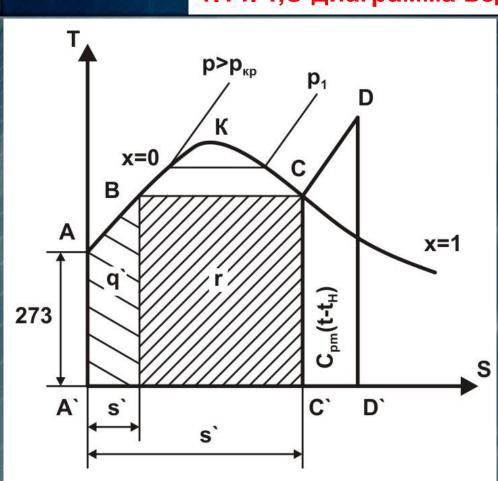
1.12. Конденсация пара



4. При конденсации пара в таких условиях температура конденсата будет постоянно уменьшаться, при этом будет уменьшаться и давление в сосуде.

- 1. Если сосуд заполнить паром и закрыть вентили 1 и 2, то в сосуде становится некоторое давление пара
- 2. Если теперь поместить сосуд в холодную среду, то пар будет отдавать тепло через стенки сосуда этой среде
- 3. Если изначально пар был сухим насыщен-ным, то отдавая тепло, пар сначала станет влажным, а затем на-чнется его конденсация с образованием жидкой фазы

ТЕХНИЧЕСКОЙ ТЕРМОДИНАМИКИ

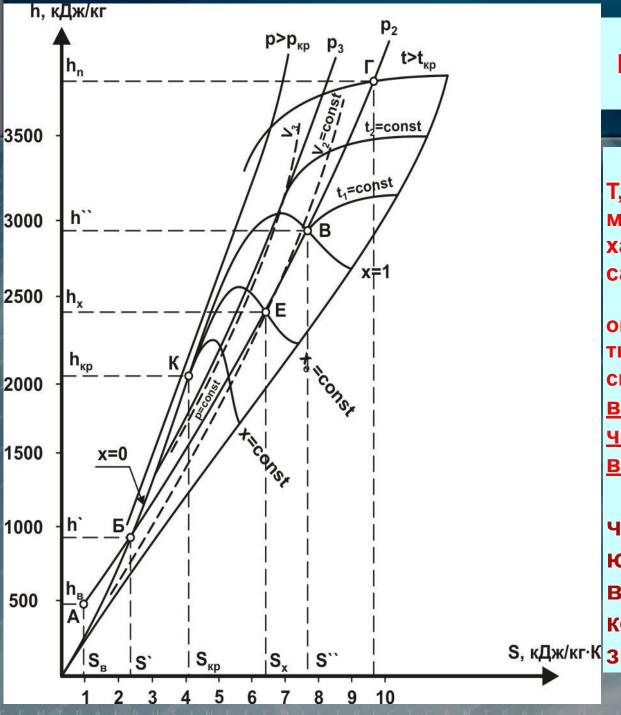

1.13. Связь температуры насыщения с давлением

Связь между температурой и давлением кипения (конденсации, испарения) с указанием областей работы: 1 – конденсаторы паровых турбин (0,04 – 0,07 кг/см², 4 – 7 кПа); 2 – сетевые подогреватели (0,6 – 2,0 кг/см², 0,06 – 0,2 МПа); 3 – парогенераторы АЭС (60 кг/см², 6,0 МПа); барабаны современных котлов (155 кг/см², 15,5 МПа)

ТЕХНИЧЕСКОЙ ТЕРМОДИНАМИКИ

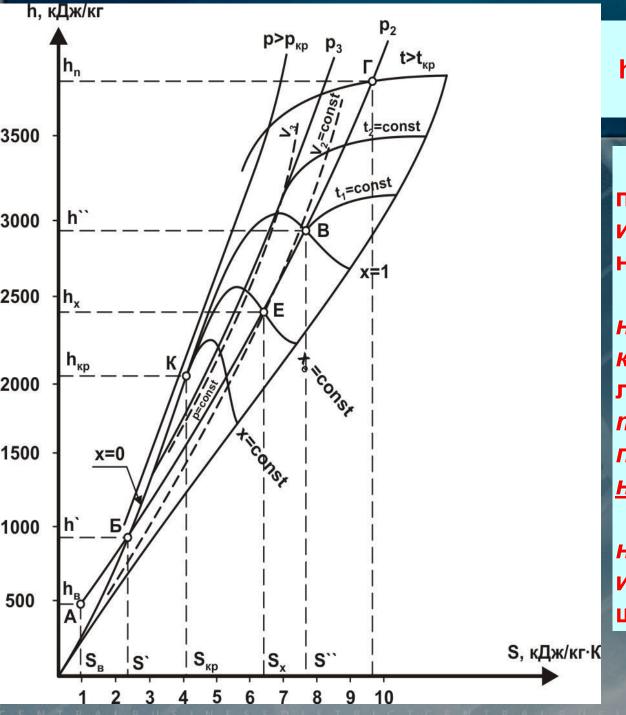
1.14. T,S-диаграмма воды и водяного пара

Пограничными линиями диаграммы являются линии x = 0 кривая ABK, каждая точка которой соответствует состоянию кипящей воды, и x = 1, кривая КСЕ, соответствующая состоянию сухого насыщенного пара.


Параметр х, называемый степенью сухости пара, показывает, сколько по массе в паре находится сухого насыщенного пара и капель воды.

Пограничные линии x = 0 и x = 1 сходятся в критической точке K, где свойства пара и воды неразличимы.

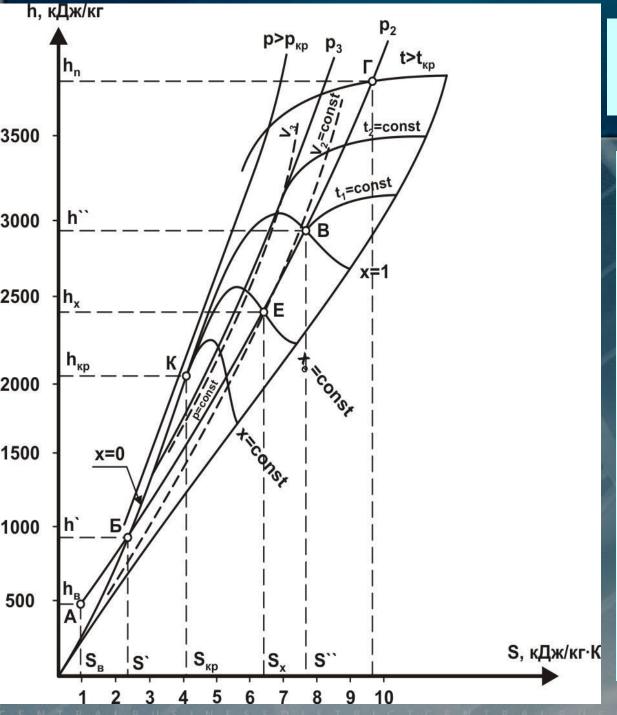
Для водяного пара параметры в критической точке составляют:


р_{кр} = 221 бар, t_{кр} = 374 °C и ϑ = 0,003147 м³/кг.

Левее и выше линии X = 0 параметры среды соответствуют воде, нагретой до темпе-ратуры кипения, правее и выше линии X = 1 – перегретому пару , а между линиями X = 0 и X = 1 – влажному пару

1.14. Тепловая h, s – диаграмма воды и водяного пара

Рассмотренная выше T, s – диаграмма даёт возможность наглядно показать характер протекания процесса превращения воды в пар. Однако в этой диаграмме определять количество теплоты в процессах сложно, т.к. это связано с расчётом соответствующих площадей, частично ограниченных кривыми линиями Для практических расчётов обычно используют h, s – диаграммой – водяного пара, ПО которой это выполнить s, кДж/кг·К значительно проще

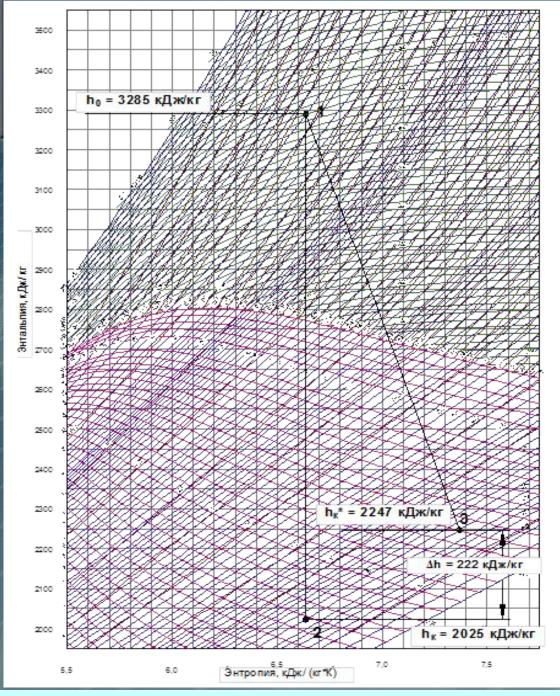


1.14. Тепловая h, s – диаграмма воды и водяного пара

На h, s – диаграмме показаны нижняя (x = 0) и верхняя (x = 1) пограничные кривые.

Координатами точек нижней пограничной кривой являются табличные значения энтальпии h' и энторопии s' воды на линии насыщения,

а верхней пограничной кривой – энтальпии и энтропии сухого насыщенного пара: h" и s".



1.14. Тепловая h, s – диаграмма воды и водяного пара

Верхняя пограничная кривая имеет сложную конфигурацию и расположена выше критической точки «К», которая не является верхней точкой слияния пограничных кривых, а смещена от вершины влево и вниз.

Параметры критической точки:

h_{кр} = 2095,2 кДж/кг; s_{кр} = 4,4237 кДж/(кг*К). Максимальное значение энтальпии сухого насыщенного пара составляет 2 801,9 кДж/кг при давлении около 3 МПа.

1.16. Свойства водяного пара как рабочего тела

Пример использования h, s – диаграммы приведен на рис., где показан процесс расширения пара в турбине.

Процесс 1 – 2 является адиабатным, т. е. теоретическим процессом расширения пара без потерь энергии. Реальный процесс расширения пара в турбине показан прямой 1 – 3.

Анализируя два эти процесса можно показать меньшую эффективность реального процесса по сравнению с теоретическим и определить потери в реальном процессе Δh , как разность энтальпий в точках 3 и 2. В этом процессе потери составляют 222 кДж/кг, следовательно, КПД цикла равен:

 $\eta = (h_o - h_k^*) / (h_o - h_k) =$ (3285 - 2247) / (3285 - 2025) = = 1038 / 1260 = 0.824 (82.4 %)

Рис. 1.6.7. Тепловая h, s - диаграмма для воды и водяного пара при x > 0,5

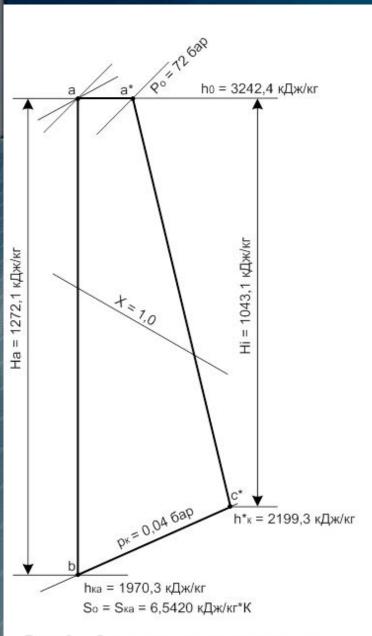


Рис. 2a. Схема условного процесса расширения пара в турбине в h-s диаграмме

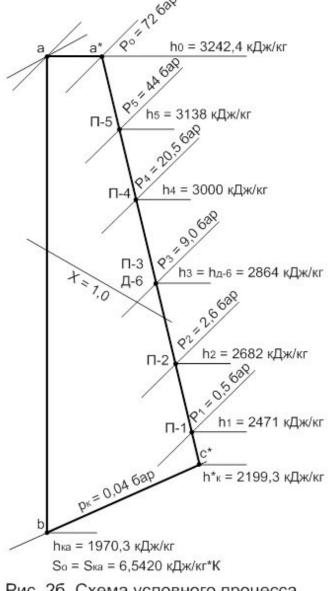


Рис. 2б. Схема условного процесса с изобарами в камерах отборов турбины на регенерацию в h-s диаграмме Процесс расширения пара в турбине