
Тема: «Строение атомного ядра. Ядерные силы. Энергия связи атомного ядра»

СТРОЕНИЕ ЯДРА АТОМА

В 1932г. после открытия протона и нейтрона учеными Д.Д. Иваненко (СССР) и В. Гейзенберг (Германия) была выдвинута протонно-нейтронная модель ядра атома.

Согласно этой модели:

- ядра всех химических элементов состоят из нуклонов: протонов и нейтронов
- заряд ядра обусловлен только протонами
- число протонов в ядре равно порядковому номеру элемента
- число нейтронов равно разности между массовым числом и числом протонов (N=A-Z)

заряд = +1 масса = 1,6726·10⁻²⁷ кг

заряд = 0 масса = $1,6749 \cdot 10^{-27}$ кг

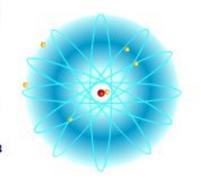
СИМВОЛИЧЕСКОЕ ОБОЗНАЧЕНИЕ ЯДРА АТОМА:

 $Z^{A}X$

А- массовое число

Z- зарядовое число

 C^{12}


Например:

Углерод

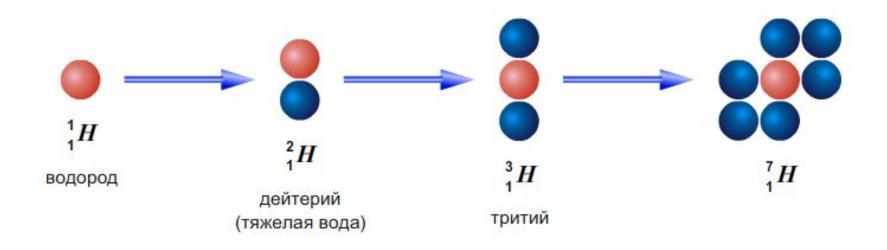
6 протонов

6 нейтронов

6 электронов

А- число нуклонов, т.е. протонов + нейтронов (или атомная масса)

Z- число протонов, соответствует порядковому(атомному) номеру элемента. (равно числу электронов)

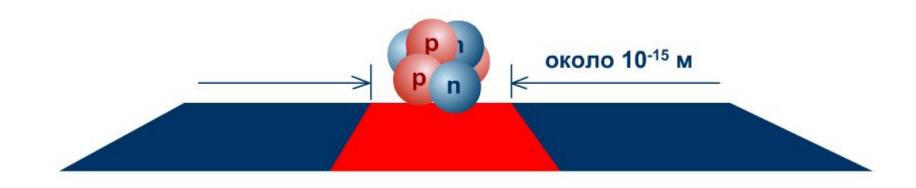

N- число нейтронов (N = A - Z)

Атомное число А численно равно массе ядра, выраженной в атомных единицах массы и округленной до целых чисел.

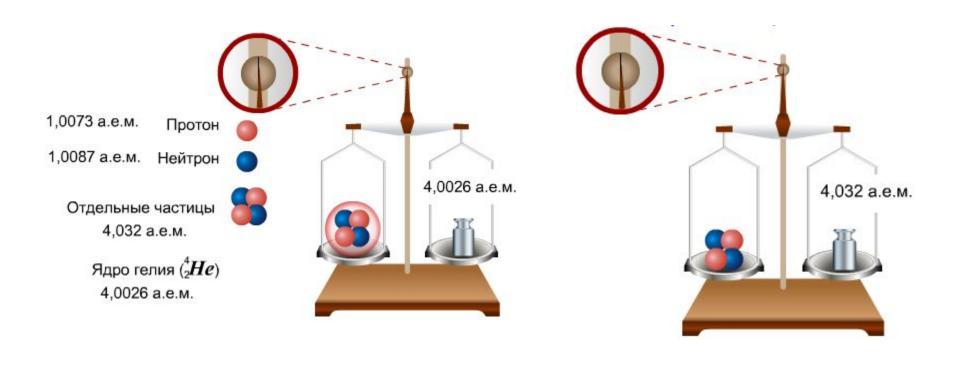
Атомная единица массы (1 а.е.м.) равна 1\12 части атома углерода.

изотопы

В ядрах одного и того же химического элемента число нейтронов различно, а число протонов одно и тоже, называют изотопами. Например, в ядрах ворода 1 протон, а число нейтронов может быть 0, 1, 2. В настоящее время получены изотопы водорода с числом нейтронов 3,4 и даже 6.



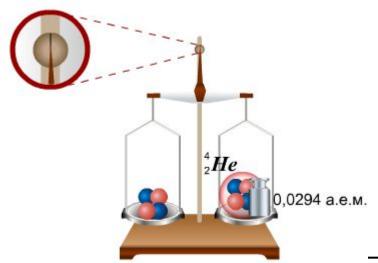
ЯДЕРНЫЕ СИЛЫ


В состав ядра входят протоны и нейтроны. Между одинаково заряженные протонами действуют электростатические силы отталкивания, однако ядро не "разлетается" на отдельные частицы. Между протонами и нейтронами внутри ядра действуют ядерные силы - силы притяжения, намного превосходящие электростатические.

Ядерные силы по величине в 100 раз превосходят электростатические и называются *сильным* взаимодействием.

Ядерные силы проявляются лишь на расстояниях внутри ядра, поэтому считаются короткодействующими, в то время как электростатические силы - дальнодействующими.

ЭНЕРГИЯ СВЯЗИ АТОМНЫХ ЯДЕР.ДЕФФЕКТ МАССЫ.



ДЕФФЕКТ МАССЫ

Измерения масс ядер показывают, что масса ядра (Мя) всегда меньше суммы масс покоя слагающих его свободных нейтронов и протонов.

При делении ядра: масса ядра всегда меньше суммы масс покоя образовавшихся свободных частиц.

При синтезе ядра: масса образовавшегося ядра всегда меньше суммы масс покоя свободных частиц, его образовавших.

$$Zm_p + Nm_n > M_g$$

Т ДЕФЕКТ МАСС

Дефект масс является *мерой энергии связи* атомного ядра.

Дефект масс равен разности между суммарной массой всех нуклонов ядра в свободном состоянии и массой ядра:

$$\Delta m = (Zm_p + Nm_n) - M_{\rm g}$$

где Мя – масса ядра (из справочника)

Z – число протонов в ядре

mp – масса покоя свободного протона (из справочника)

N – число нейтронов в ядре

mn – масса покоя свободного нейтрона (из справочника)

Уменьшение массы при образовании ядра означает, что при этом уменьшается энергия системы нуклонов.

ЭНЕРГИЯ СВЯЗИ

Ядра атомов представляют собой сильно связанные системы из большого числа нуклонов.

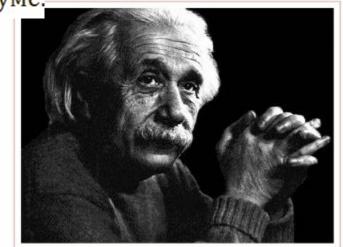
Для полного расщепления ядра на составные части и удаление их на большие расстояния друг от друга необходимо затратить определенную работу А.

Энергией связи называют энергию, равную работе, которую надо совершить, чтобы расщепить ядро на свободные нуклоны.

E связи = A

По закону сохранения энергия связи одновременно равна энергии, которая выделяется при образовании ядра из отдельных свободных нуклонов.

Формула для расчета энергии связи ядра - это формула Эйнштейна: если есть какая-то система частиц, обладающая массой, то изменение энергии этой системы приводит к изменению ее массы.


$$E_{\rm CB} = \Delta mc^2 = ((Zm_p + Nm_n) - M_{\rm H})c^2$$

Здесь энергия связи ядра выражена произведением дефекта масс на квадрат скорости света.

 Δm — деффект массы, с — скорость света в вакууме.

В ядерной физике массу частиц выражают в атомных единицах массы (а.е.м.)

1a. e. m. = $1,660566 * 10^{-27} \text{K}$

Альберт Эйнштейн (1879-1955)

Энергию связи можно рассчитать **в Джоулях**, подставляя в расчетную формулу массу в килограммах.

Однако, в ядерной физике принято выражать энергию в электронвольтах (эВ):

$$1эB = 1,60219 * 10^{-19}$$
 Дж

Просчитаем соответствие 1 а.е.м. электронвольтам:

1a. e. m. =
$$\frac{1,660566*10^{-27} \text{k}\text{r}*9*10^{16} \frac{\text{M}^2}{\text{c}^2}}{1,660566*10^{-27} \text{k}\text{r}} = 931 \text{M} \text{3B}$$

Теперь расчетная формула энергии связи (в электронвольтах) будет выглядеть так:

$$E_{\rm CB} = \Delta m 931 {\rm M} \odot {\rm B}$$

Вычислим энергию связи ядра гелия.

Для того чтобы энергию связи получить в джоулях, дефект масс нужно выразить в килограммах.

Учитывая, что 1 а.е.м. = 1,6605 • 10⁻²⁷ кг, получим

$$\Delta m = 0.0294 \text{ a.e.m.} = 0.0488 \cdot 10^{-27} \text{ K}\text{ F}$$

$$E_{cb} = 0.0488 \cdot 10^{-27} \text{ кг} \cdot (2.9979 \cdot 10^8 \frac{\text{M}}{\text{C}})^2 = 0.4388 \cdot 10^{-11} \text{ Дж}$$

Это огромная величина. Образование всего 1 г гелия сопровождается выделением энергии порядка 10¹² Дж. Примерно такая же энергия выделяется при сгорании почти целого вагона каменного угля.

УДЕЛЬНАЯ ЭНЕРГИЯ СВЯЗИ

Устойчивость ядер характеризует физическая величина, называемая удельной энергией связи. Она равна энергии связи, которая приходится тольк на одну ядерную частицу(протон или нейтрон):

$$E_{yx} = \frac{\dot{E}_{cB}}{A}$$

По графику зависимости удельной энергии связи от массового числа элементов можно заметить, что дл легких ядер энергия связи мала. Удельная энергия связи имеет наибольшее значение для ядер атомое расположенных в средней части периодической таблицы элементов с массовыми числами от 28 до 138. С дальнейшим ростом массового числа удельная энергия связи убывает.

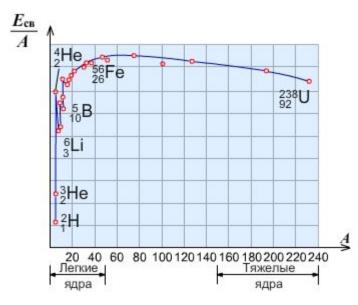


Рис 1. Зависимость удельной энергии связи от массового числа

ЗАКРЕПЛЕНИЕ МАТЕРИАЛА

- 1.Каков состав ядер натрия 23, фтора 19, серебра 107, кюрия 247, менделевия 257?
- 2.Найти энергию связи ядра Есв и удельнуюсэнергию связи Есв/А для: 1) 2 H; 2) 6 Li; 3) 7 Li; 4) 12 C; 5) 16 O; в) 27 Al.