Наиболее изученными в ИСО являются задачи, которые решаются при наличии полной информации. Это задачи принятия решений *в условиях определённости*. Если информация о системе и (или) внешней среде частично отсутствует, то имеет место задача принятия решений в условиях неопределённости.

В ИСО принято различать три типа неопределенностей:

- 1) неопределенность целей;
- 2) неопределенность знаний об окружающей обстановке и действующих в данном явлении факторах (неопределенность природы);
 - 3) неопределенность действий активного или пассивного партнера или противника.
 - Кроме этого, необходимо учитывать отношение к случайности.
- ❖ Стохастическая (вероятностная неопределенность), факторы статистически устойчивы объекты теории вероятностей.
- ♦ Неопределенность не стохастического вида, никаких предположений о стохастической устойчивости не существует.
- Неопределенность промежуточного типа, решение принимается на основе гипотез о законах распределения случайных величин. ЛПР понимает риск несовпадения полученных результатов с реальными условиями.

Если бы губы Никанора Ивановича да приставить к носу Ивана Кузьмича, да взять сколько-нибудь развязности, какая у Балтазара Балтазарыча, да, пожалуй, прибавить к этому еще дородности Ивана Павловича — я бы тогда тотчас же решилась.

Н. В. Гоголь

Рассмотрим следующие примеры.

Компания может перевозить свою продукцию из пункта производства в пункт потребления речным, железнодорожным и автомобильным транспортом. Затраты на перевозку единицы продукции соответственно равны C1 < C2 < C3 .

Время перевозки единицы продукции, в зависимости от вида транспорта равно t1 > t2 > t3. Компания должна перевезти A единиц продукции. Естественно желание компании осуществить перевозку с наименьшими транспортными расходами. Продукция компании является скоропортящейся, поэтому время перевозки должно быть минимально.

Введем переменные X1, X2, X3, означающие количество продукции перевозимой речным, железнодорожным и автомобильным транспортом соответственно. Получим ограничения:

$$X1 + X2 + X3 = A$$
,
 $Xi \ge 0$, $i = 1,2,3$.

И две целевые функции:

$$C1 X1 + C2 X2 + C3 X3 \rightarrow \min$$
,
 $t1 X1 + t2 X2 + t3 X3 \rightarrow \min$.

Дуополия Курно.

Две фирмы выпускают однородный товар и продают его на рынке.

Цена, складывающаяся на рынке, линейно убывает с ростом суммарного предложения:

$$p(u)=a-b(u_1+u_2),$$

где: a - первоначальная цена товара при появлении его на рынке, b – коэффициент убывания цены, u_1 и u_2 объемы выпуска продукции первой и второй фирмой соответственно (по своему смыслу величины u_1 и u_2 неотрицательны).

Пусть затраты первой и второй фирм на выпуск единицы продукции равны c_1 и c_2 . Цель каждой фирмы состоят в максимизации своей прибыли.

Получим две целевые функции

$$g^{1}(u_{1},u_{2})=p(u)u_{1}-c_{1}u_{1} \rightarrow \max,$$

 $g^{2}(u_{1},u_{2})=p(u)u_{2}-c_{2}u_{2} \rightarrow \max.$

Ограничения

 $u_1^{} + u_2^{} \leq d$, d – объем, выше которого производство становится нерентабельным, $u_1^{} \geq 0,\, u_2^{} \geq 0.$

Неопределенность целей. Многокритериальные задачи.

В задачах этого типа присутствуют ограничения (обычные системы уравнений или неравенств), которым должны подчиняться переменные $x_1, x_2, ..., x_k$ и несколько критериев, например, n:

$$f_1(x_1,...,x_k) \to \max,..., f_n(x_1,...,x_k) \to \max$$

Это и есть неопределенность цели. Для решения таких задач необходимо привлекать дополнительные гипотезы.

Существует два основных подхода к решению такого класса задач:

- сведение к стандартным задачам с одними критерием;
- сужение неопределенности.

І. Сведение к стандартной задаче с одним критерием.

1) Линейная свертка. Если все критерии измеряются в одной шкале, то строят обобщенный критерий вида:

$$F(x) = \sum_{i=1}^{n} c_i f_i(x_1, ..., x_k), \sum_{i=1}^{n} c_i = 1, c_i \ge 0.$$

где C_i – веса соответствующих критериев.

Как правило, веса подбираются экспериментально, они отражают представление оперирующей стороны о содержании выбранного компромисса.

Таким образом, содержание компромисса состоит в ранжировании целей весами — дополнительная гипотеза, с помощью которой происходит сведение к задаче с одним критерием.

Сведение к стандартной задаче с одним критерием.

2) Использование контрольных показателей.

Пусть задана система контрольных нормативных показателей f_i^* , i=1,...,n, относительно которых критерии должны удовлетворять условию:

$$f_i(x) \ge f_i^*$$
, $i = 1,...,n$.

а) В некоторых случаях целевую функцию удобно представлять в виде

$$F(x) = \min_{i} \frac{f_i(x)}{f_i^*(x)},$$

и решать задачу

 $F(x) \rightarrow \max$.

б) Предположим, что среди функций, выделен основной критерий, например $f_1(x)$ Тогда снова приходим к однокритериальной задаче:

при условии J_1

$$f_1(x) \rightarrow \max$$

$$f_i(x) \ge f_i^*$$
, $i = 2,...,n$.

Сведение к стандартной задаче с одним критерием.

3) Ранжирование критериев. Критерии ранжируются по степени важности.

Пусть ранжированный ряд имеет вид $f_1(x), f_2(x), ..., f_n(x)$.

Решаем последовательно *п* задач:

$$f_1(x) \rightarrow \min, x \in \Omega_0,$$

 $f_2(x) \rightarrow \min, x \in \Omega_1,$
...

$$f_n(x) \rightarrow \min_{n=1}^{\infty} x \in \Omega_{n-1}$$
.

Здесь $\Omega 0$ – множество допустимых решений исходной задачи, формируемое её ограничениями, $\Omega 1$ - множество оптимальных решений первой задачи, Ωn -1 – множество оптимальных решений n – 1 задачи. Множество Ωn – множество решений n-ой задачи является искомым.

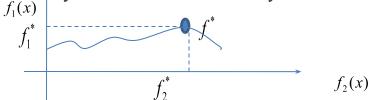
Сведение к стандартной задаче с одним критерием.

4) Введение метрики в пространстве целевых функций. Предположим мы решили систему однокритериальных задач: $f_i(x) \to \max, i = 1,...,n.$

В каждой *i*-ой задаче нашли вектор $x = x^i$ — доставляющий максимум критерию

$$f_i(x): f_i(x^i) = f_i^*$$
.

Совокупность скалярных величин f_i^* , i=1,...,n , в пространстве критериев определяет некоторую точку, называємую "абсолютным максимумом".



Если все x^i , i=1,...,n, различны , то точка f^* недостижима в пространстве критериев. $R=\left|r_{ij}\right|,i,j=1,...,n$, Введем положительно определенную матрицу Тогда скалярная величина:

$$h(x) = \sqrt{(f_i(x) - f_i^*)r_{ij}(f_j(x) - f_j^*)}$$

определяет некоторое расстояние от точки соответствующей вектору x до точки "абсолютного максимума". Частный случай, когда R — единичная матрица, то - Евклидово расстояние. В качестве критерия можно выбрать:

$$h(x) \rightarrow \min_{x}$$
.

П. Сужение неопределенности. Компромиссы Парето.

Другой подход к решению многокритериальных задач заключается в попытке сократить множество исходных вариантов, т.е. исключить из неформального анализа те варианты решений, которые являются заведомо плохими. Этот подход используется в случае равнозначности критериев.

Предположим, что сделан некоторый выбор χ^* , и существует другой выбор χ такой, что для всех критериев имеет место неравенство:

$$f_i(x) \ge f_i(x^*), i = 1,...,n,$$

причем хотя бы одно из неравенств — строгое. Очевидно, что выбор χ предпочтительнее выбора χ^* .

Вектор называется *не улучшаемым вектором результатов* (*вектором Парето*, эффективным вектором), если из

соотношений

$$f_i(\bar{x}) \ge f_i(x^*), i = 1,...,n,$$

следует, что,

$$f_i(\bar{x}) = f_i(x^*), i = 1,...,n$$
.

Множество всех векторов Парето называют множеством Парето.

Принцип Парето: в качестве решения следует выбирать только тот вектор x, который принадлежит множеству Парето.

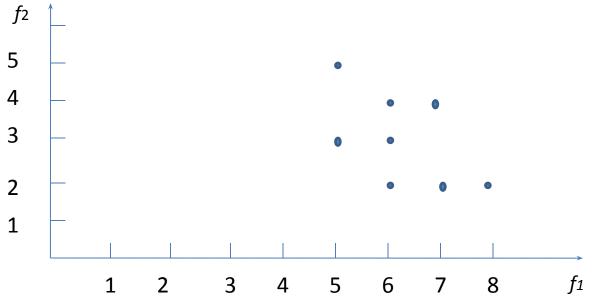
Исаченко А.Н. Лекция 2

Рассмотрим пример. Фирма по разработке программного обеспечения должна выполнить два проекта 1 и 2 в порядке 1,2. Для выполнения каждого из проектов фирма может привлекать одного, двух или трёх программистов. Пусть X1 число программистов, привлекаемых для выполнения первого, X2 — второго проектов. Время выполнения проекта i равно ti(Xi), i=1,2. Стоимости работ по проектам равны Ci(Xi), i=1,2. Требуется минимизировать общее время выполнения проектов и стоимость их выполнения. Общая стоимость их выполнения f1(X1,X2) = C1(X1)+C2(X2), а время выполнения проектов равно f2(X1,X2) = t1(X1)+t2(X2). Получим задачу f1(X1,X2) \rightarrow min f2(X1,X2) \rightarrow min f2(X1,X2) \rightarrow min f2(X1,X2) \rightarrow min

Пусть значения функций заданы в таблице:

Определим все возможные значения пар (f_1, f_2) . 1 2 3), (5,3), (6,4), (6,2), (6,3), (7,4), (8,2), $C_1(X)$ 1 2 3 $C_2(X)$ 4 4 5 $t_1(X)$ 2 1 1 $t_2(X)$ 3 1

Построим в пространстве критериев точки соответствующие парам (f_1,f_2) .



Поиск точек Парето можно осуществить графически. Находим точки с минимальным значением f_1 . Затем среди них находим точку с минимальным значением f_2 . Включаем её в множество Парето. Затем исключаем из рассмотрения все точки, у которых значения по обоим критериям больше или равны соответствующим значениям найденной точки Парето. Для оставшегося множества повторяем процедуру.

Для нашего примера получим множество Парето: (5,3), (6,2).