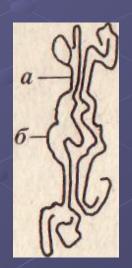
Тема «Понятие о высокомолекулярных соединениях. Классифика пластмасс. Синтегич каучуки. Синтети волокна. Капрон

ОБЩИЕ ПОНЯТИЯ ХИМИИ ВМС

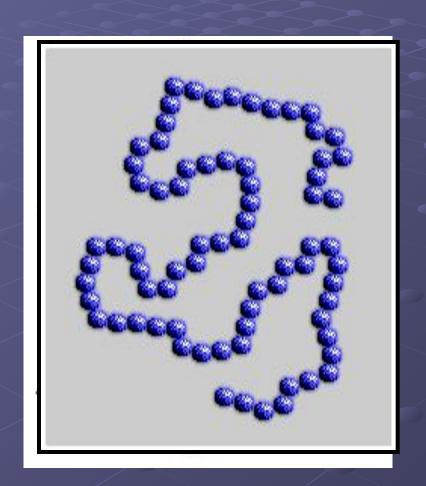

n
$$CH_2 = CH \rightarrow (-CH_2 - CH -)_n$$

 CH_3 CH_3

- Полимер высокомолекулярное соединение, состоящее из множества одинаковых повторяющихся структурных звеньев.
- *Мономер* низкомолекулярное вещество, из которого синтезируют полимер.
- *Структурные звенья* многократно повторяющиеся в макромолекуле группы атомов.
- *Степень полимеризации* число *п* в формуле полимера, показывающее сколько молекул мономера соединяется в макромолекулу.

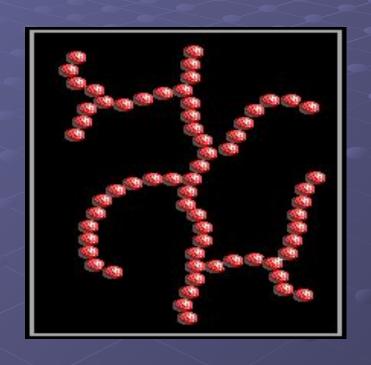
Макромолекулы полимеров могут иметь различную геометрическую форму:

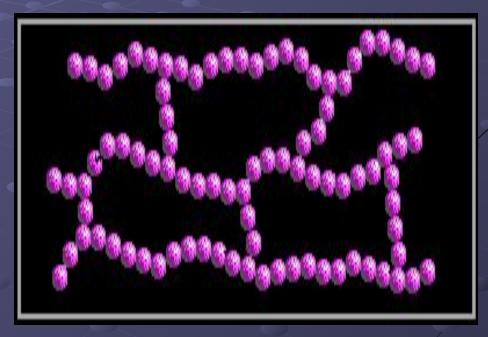
- а) линейная (полиэтилен) б) разветвленная (крахмал) в) пространственная (резина)


Полимеры могут иметь кристаллическое и аморфное строение.

Под кристалличностью полимеров понимается упорядоченное (параллельное) расположение макромолекул. Аморфное строение характеризуется отсутствием

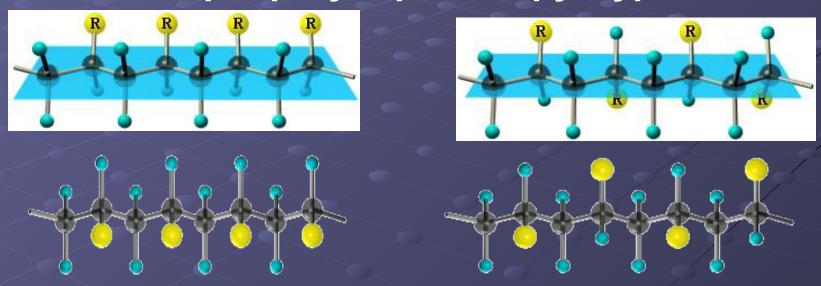
упорядоченности.


Форма макромолекул.

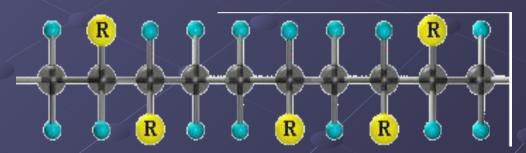


Линейная форма

Форма макромолекул.



Разветвленная форма


Пространственная форма

Пространственные конфигурации синтетических каучуков.

Стереорегулярная структура.

Нестереорегулярная структура.

СВОЙСТВА ПОЛИМЕРОВ

- Молекулярная масса полимера определяет его физическое состояние: при небольшой степени полимеризации получается густая жидкость, увеличение числа элементарных звеньев приводит к образованию твердого вещества. Чем больше молекулярная масса, тем выше физико-механические свойства полимера.
- Не имеют определенной температуры кипения и плавления.
- Плохая растворимость.
- Высокая механическая прочность, химическая стойкость, легкость.

Эти свойства полимеров обуславливают их широкое применение.

СПОСОБЫ ПОЛУЧЕНИЯ ПОЛИМЕРОВ

- Реакция полимеризации это процесс соединения молекул в более крупные молекулы.
- Реакция поликонденсации это процесс образования высокомолекулярных соединений из низкомолекулярных, идущий с отщеплением побочного низкомолекулярного продукта (чаще всего воды).

Получение

полимеров.

• Реакция полимеризации – процесс, в результате которого молекулы низкомолекулярного соединения (мономеры) соединяются друг с другом при помощи ковалентных связей, образуя полимер. Эта реакция характерна для соединений с кратными связями.

- Реакция поликонденсации процесс образования полимера из низкомолекулярных соединений, содержащих 2 или несколько функциональных групп, сопровождающийся выделением за счет этих групп, таких веществ, как вода, аммиак, галогеноводород и т. п. (Капрон, нейлон, фенолформальдегидные смолы).
- Реакция сополимеризации процесс образования полимеров из двух или нескольких разных мономеров. (Получение бутадиенстирольного каучука).

СРАВНЕНИЕ ПРОЦЕССОВ ПОЛИМЕРИЗАЦИИ И ПОЛИКОНДЕНСАЦИИ

Признаки сравнения	Полимеризация	Поликонденсация				
Сходство						
Исходные вещества	Низкомолекулярные соединения					
Продукты — полимеры						
Изменение плот- ности полимера по сравнению с мономером	полимера выше плотности мономера (г/см³).					
Различия						
Особенности строения исход- ных мономеров	Соединения с кратными связями, т. е. непредельные соединения	Соединения, с не менее чем двумя функциональными группами				
Тип реакции	Соединения (присоединения) Обмена					
Продукт реакции	Только полимер и того же состава в звене, что и мономер исходных мономеров, а также побомолекулярное вещество (H ₂ O, NH ₃ , и др.) в большинстве случаев ¹					

Обратный процесс	Деполимеризация	Гидролиз (в случае выделения воды)
Обратимость	Плохая	Хорошая, поэтому реакции поликонденсации до конца не идут, в системе устанавливается химическое равновесие
Относительная молекулярная масса полимера	Порядка 104—106	Обычно не превышает 50 000
Примеры процессов	1) $n\text{CH}_2$ =CH $_2$ \longrightarrow (—CH $_2$ —CH $_2$ —) $_n$ полиэтилен 2) $n\text{CH}_2$ =CH—CH=CH $_2$ + $n\text{CH}_2$ =CH \longrightarrow бутадиен-1,3 \qquad С $_6\text{H}_5$ стирол \rightarrow (—CH $_2$ —CH=CH—CH $_2$ —CH $_2$ —CH $_3$ С $_6\text{H}_5$ $_6$ бутадиен-стирольный каучук	$1) nC_6H_{12}O_6 \longrightarrow (-C_6H_{10}O_5-)_n + nH_2O$ глюкоза полисахарид $2) nHOOC-(CH_2)_4-COOH +$ адициновая кислота $+ nH_2N-(CH_2)_6-NH_2 \longrightarrow$ гексаметилендиамин $\rightarrow (-OC-(CH_2)_4-CONH-(CH_2)_6-NH-)_n +$ нейлон $+ (2n+1)H_2O$

 Широко распространенный полимер поливинилхлорид имеет строение:

$$-CH_2 - CH - CH_2 - CH - CH_2 - CH - \dots$$

Найдите структурное звено полимера и определите структурную формулу мономера.

Сополимеризацией бутадиена-1,3 и стирола получают бутадиенстирольный каучук. Составить уравнение данной реакции.

Исходные вещества:

$$CH_2 = CH - CH = CH_2$$

$$CH_2 = CH$$
 C_6H_5

КЛАССИФИКАЦИЯ ПОЛИМЕРОВ

ПОЛИМЕРЫ

ХИМИЧЕСКИЕ

ИСКУССТВЕННЫЕ <u>СИНТЕТИЧЕСКИЕ</u>

- 1. Пластмассы
- 2. Волокна
- 3. Каучуки

Пластмассы.

Пластическим массами называют материалы на основе природных и синтетических ВМС (часто в состав пластмасс входят и другие компоненты), способные под воздействием высокой температуры и давления принимать любую заданную форму и сохранять её после охлаждения (пластичность). Если полимер переходит из высокоэластичного состояние в стеклообразное при температуре ниже комнатной, его относят к эластомерам, при более высоких – к пластикам.

Пластмассы делятся на два типа: термопластичные и термореактивные.

- Термопластичные

 пластмассы, которые обратимо твердеют и размягчаются.
- Свойства:
- Их структура линейная.
- У них отсутствуют прочные связи между отдельными цепями.
- Легко плавятся, используются для переплавки.

- Термореактивные

 пластмассы, которые при нагревании утрачивают способность переходить в вязкотекучее состояние изза образования сетчатой структуры.
- Свойства:
- Сетчатая структура.
- Существуют прочные связи между отдельными цепями.
- С трудом плавятся, не подвергаются переплавке.

Применение пластмасс.

Пласт-	Формула .	Внешние признаки	Отношение к нагреванию, горению	Реакции на продукты разложения	Действие растворителей			
масса					ацетона	бензола	дихлорэтана	
Полиэти- лен	(—CH ₂ —CH ₂ —) _n	По внешнему виду сходен с парафином. Относительно мягкий и эластичный материал. Тонкие пленки прозрачные. Цвет различный	При нагревании размягчается — можно вытянуть нити. Горит синим пламенем, при этом плавится и образует капли	Не обесцве- чивает раство- ры КМпО ₄ и Вг ₂	Не растворяется Не растворяется Набухает		ся	
Поливи- нилхлорид	(—CH ₂ —CH—) _n CI	Относительно мягкий материал. При пониженной температуре становится твердым и хрупким. Цвет различный	При нагревании размягчается. Горит небольшим пламенем, образуя черный хрупкий шарик. Вне пламени гаснет. При горении чувствуется острый запах	Выделяю- щийся хлоро- водород окра- шивает лакму- совую бумаж- ку в красный цвет, с раство- ром AgNO ₃ об- разует осадок белого цвета			Набухает, становится рыхлым	
Полисти- рол	(—CH ₂ —CH—) _n C ₆ H ₅	Твердый, хрупкий, почти прозрачный или непрозрачный материал. Может быть разного цвета	При нагревании размягчается, легко вытягивается в нити	Обесцвечи- вает растворы КМпО ₄ и Вг ₂	Набухает	Растворяется (растворяется также в толуоле и в ксилоле)		
Фенол- формальде- гидные (фе- нопласты)	C—OH C—CH ₂ — H—C—H	Твердые, хрупкие мате- риалы темного цвета с блес- тящей поверх- ностью	При сильном нагревании разлагаются. Горят, распространяя резкий запах фенола, вне пламени постепенно гаснут	_	Не	е растворяют с	ся	

- Натуральный каучук представляет собой высокомолекулярный непредельный углеводород, молекулы которого содержат большое количество двойных связей; состав его может быть выражен формулой (С Н)n где n от 1000 до 3000). Он является полимером изопрена.
- Природный каучук содержится в млечном соке каучуконосных растений, главным образом тропических (браз. дерево гевея). Его получают из их сока.

- Другой природный продукт гуттаперча. Она также является полимером изопрена, но с иной конфигурацией молекул.
- Важнейшими физическими свойствами каучуков являются:
- Эластичность способность восстанавливать форму.
- Непроницаемость для воды и газов.
- Сырой каучук липок, непрочен, при небольшом понижении температуры становится хрупким. Чтобы придать изготовленным из каучука изделиям необходимую прочность и эластичность, каучук подвергают вулканизации – вводят серу и нагревают. Вулканизированный каучук – это резина.
- К сожалению, у нас нет возможности производить природный каучук.

Волокна.

- Волокна ВМС природного синтетического происхождения, перерабатываемые в нити. Характеризуются высокой упорядочностью молекул (линейные полимеры).
- Природные волокна бывают 2 типов:
- животного происхождения белковые. Их получают из животных (шерсть, шелк).
- растительного происхождения целлюлозные. Их вырабатывают из растительности (хлопок, лен, джут).
- Применяют в легкой промышленности для одежды и других принадлежностей. Также для изготовления веревок, канатов и др.

волокна

ПРИРОДНЫЕ

ХИМИЧЕСКИЕ

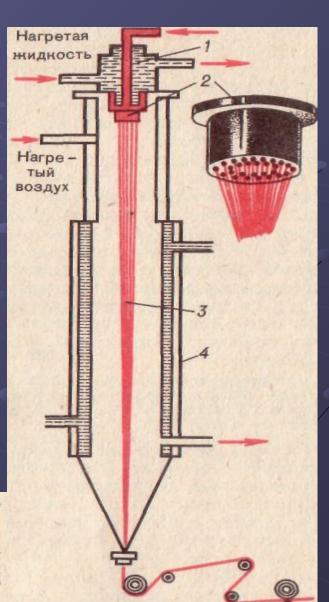
Растительного происхождения Животного происхождения

Искусственные

Синтетические

Хлопковое, льняное и др.

Шерстяное, шелковое


Висскозное, медноаммиачное, ацетатное Нитрон, лавсан, капрон, энант, анид и др.

Получение ацетатного волокна

 $\begin{array}{c} \text{OCOCH}_3\\ [\text{C}_6\text{H}_7\text{O}_2^{-}\text{-}\text{OCOCH}_3]_n\\ \text{OCOCH}_3 \end{array}$

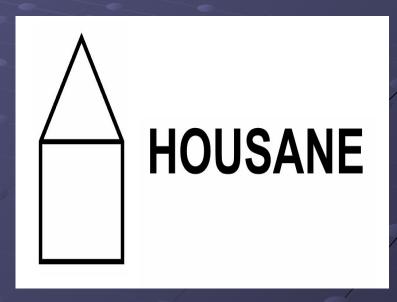
триацетат целлюлозы

Рис. 48. Схема формовання ацетатного волокна: 1 — прядильная головка; 2 — фильера; 3 — образующиеся волокна; 4 — шахта.

ВОЛОКНО ЛАВСАН

ВОЛОКНО КАПРОН

$$H_2N$$
— CH_2 —


Реакцию упрощенно представим в следующем виде1:

$$H$$
 O \parallel $(-N-(CH_2)_5-C-)_n$

Волокно	Формула	Сжигание	Реакции на продукты разложения	Действие кислот и щелочей (н. у.)				Действие растворителей	
	nah.			HNO ₃ ($\rho = 1.4 \text{ r/cm}^3$)	H_2SO_4 ($\rho =$ = 1,84 r/cm ³)	NaOH (10%)	ацетона	расплав- ленного фенола	
Хлопок (хлопчато- бумажная ткань)	(C ₆ H ₁₀ O ₅) _n	Горит быстро с запахом жженой бумаги. Остается черный пепел	Окрашивает синюю дак- мусовую бумажку в крас- ный цвет	Растворяется, об- разуя бесцветный раствор	Растворяется	Набухает, но не раство ряется	Не растворяется		
Шерсть, натураль- ный шелк		Горят медленно с запахом жженых волос, образуя шарик черного цвета, который растирается в порошок	Окрашивают красную лакмусовую бумажку в синий цвет	Набухают и окра- шиваются в желтый цвет	Разрушаются	Растворяются	Не растворяются		
Вискоз- ное	(C ₆ H ₁₀ O ₅) _n	Горит быстро с запахом жженой бумаги. Остаются следы золы	Окрашивает синюю лак- мусовую бумажку в крас- ный цвет	Растворяется, об- разуя бесцветный раствор	Растворяется, об- разуя красно-корич- невый раствор	Сильно набухает и раст воряется	Не растворяется		
Ацетат- ное	ОСОСН ₃ ОСОСН ₃ ОСОСН ₃ ОСОСН ₃ , оСОСН ₃ , оСОСН ₃ , оСОСН ₃ , оСОСН ₃	Горит быстро, образуя шарик темно-бурого цвета. Вне пламени не горит	Окрашивает синюю лак- мусовую бумажку в крас- ный цвет	Растворяется, образуя бесцветный раствор	Растворяется	Образуется желтоватый раствор	Раство- ряется	Не раст- воряется	
Нитрон	(—CH2—CH—) " i C≡N	Горит, образуя темный не блестящий рыхлый шарик	Окрашивает красную лакмусовую бумажку в си- ний цвет	Не растворяется (растворяется в ды- мящей HNO ₃)	Растворяется	Не растворяется (при ки- пячении краснеет)	Не раст	Не растворяется	
Хлорин	(-CH ₂ -CH-CH- CI CI CH-)*	При поджигании горит не- большим коптящим пламенем, образуя черный хрупкий ша- рик. Вне пламени не горит. При горении распространяет острый запах	Образующийся хлорово- дород окрашивает влаж- ную синюю лакмусовую бу- мажку в красный цвет, да- ет осадок с AgNO ₃	Не растворяется	Не растворяется	Не растворяется	Раство- ряется	Не раст- воряется	
Лавсан	O (-C-C ₆ H ₄ -C-CH ₂ - -CH ₂ -O-) _n	Горит коптящим пламенем и образует твердый блестящий шарик темного цвета	На стенках пробирки образуется желтое кольцо	Не растворяется (растворяется в ды- мящей HNO ₃)	Растворяется	Не растворяется	Не раст- воряется	Раство- ряется	
Капрон	H O (-N-(CH ₂) ₈ -C-) _n	Плавится, образуя твердый блестящий шарик темного цве- та. Чувствуется неприятный запах	Окрашивает красную лакмусовую бумажку в си- ний цвет	Растворяется, образ вор	уя бесцветный раст-	Не растворяется	Не раст- воряется	Раство- ряется	

Домашнее задание

- § 42-46, изучить, сделать конспект;
 Тестовые задания на с. 198 и с. 202.
- Сделать сообщения на темы: «Получение и применение полипропилена», «Полиэтилен низкого давления и полиэтилен высокого давления: получение и применение»; «Фенолформальдегидные смолы»; «Природные источники каучука»; «Производство и применение синтетического каучука»; «Бутадиеновый каучук», «Дивиниловый каучук», «Изопреновый каучук», «Бутадиенстирольный каучук», «Хлоропреновый каучук», «Капрон и лавсан: получение и применение»

