
OOP
Interfaces 
Polymorphism
Part 2



SoftServe Confidential

AGENDA

• Java OOPs Concepts

• Interface

• Polymorphism

• Sorting

• *Class Diagram



SoftServe Confidential

Java OOPs Concepts
Object
Any entity that has state and behavior is known as an object. For example: chair, pen, 
table, keyboard, bike etc. It can be physical and logical.

Class
Collection of objects is called class. It is a logical entity. 

Encapsulation
Binding (or wrapping) code and data together into a single unit is known as encapsulation. 
For example: capsule, it is wrapped with different medicines.

A java class is the example of encapsulation. Java bean is the fully encapsulated class 
because all the data members are private here.



SoftServe Confidential

Java OOPs Concepts

Inheritance
When one object acquires all the properties and behaviors of parent object i.e. known as 
inheritance. It provides code reusability. It is used to achieve runtime polymorphism.

Polymorphism
When one task is performed by different ways i.e. known as polymorphism. For example: 
cat speaks meow, dog barks woof etc.

Abstraction
Hiding internal details and showing functionality is known as an abstraction. For example: 
phone call, we don't know the internal processing.

In java, we use abstract class and interface to achieve abstraction.



SoftServe Confidential

Interfaces

• An interface is a reference type in Java, it is similar to class, it is a collection of 
abstract methods. A class implements an interface, thereby inheriting the abstract 
methods of the interface.

• Along with abstract methods an interface may also contain constants, default methods, 
static methods, and nested types. Method bodies exist only for default methods and 
static methods.

• An interface is essentially a type that can be satisfied by any class that implements 
the interface. 

• Any class that implements an interface must satisfy 2 conditions
• It must have the phrase "implements Interface_Name" at the beginning of the class 

definiton;
• It must implement all of the method headings listed in the interface definition.



SoftServe Confidential

Interfaces

public interface Worker {

 int getSalary(); // public abstract

}

public class Director implements Worker {

public int getSalary() {

    // method definition here

}

} 



SoftServe Confidential

Interfaces
• Example

interface Volumetric {
    double PI = 3.14;

    double getVolume();

    static double getPI() {
        return Volumetric.PI;
    }
    default String info() {
        return definition() + 
            "1 litre = (10 cm)^3 = 1000 cubic centimetres = 0.001 cubic metres";
    }
    private String definition() {
        return "Volume is the quantity of three-dimensional space" + 
            "enclosed by a closed surface.\n";
    }
}



SoftServe Confidential

Interfaces
• To access the interface methods, the interface must be "implemented by 

another class with the implements keyword. 

• Example:

public class Ball extends Shape implements Volumetric {
    private double radius;
    public Ball(double radius, String name) {
        super(name); this.radius = radius;
    }
    @Override
    public double getArea() {
        return 4 * Math.PI * radius * radius;
    }
    @Override
    public double getVolume() {
        return 4.0 / 3 * Volumetric.PI * Math.pow(radius, 3);
    }
}



SoftServe Confidential

Multiple interfaces implementation
• To implement multiple interfaces, separate them with a comma:

class Cube extends Shape implements Vertexable, Volumetric {
    private double side;
    public Cube(double side, String name) {
        super(name);
        this.side = side;
    }
    @Override
    public double getArea() {
        return 12 * side;
    }
    @Override
    public double getVolume() {
        return Math.pow(side, 3);
    }
    @Override
    public int getNumberOfVertex() {
        return 8;
    }
}

interface Vertexable {
    int getNumberOfVertex();
}

interface Volumetric {
    double getVolume();
}



SoftServe Confidential

Interfaces with same method
• If a type implements two interfaces, and each interface define a method that 

has identical signature, then in effect there is only one method, and they are 
not distinguishable.

public interface Vertexable {

    ...

    void info();
}

public interface Volumetric {

    ...

    void info();
}

public class Cube extends Shape implements Vertexable, Volumetric {

    ...

    @Override
    public void info() { ... }  
}

Note that there is only one 
@Override necessary. This is 
because Vertexable.info and 
Volumetric.info are 
"Override-equivalent"



SoftServe Confidential

Extending Interfaces

• An interface can extend another interface  in the same way that a class can 
extend another class. 

• The extends keyword is used to extend an interface, and the child interface 
inherits the methods of the parent interface.

interface A { }
interface B { }

interface Volumetric extends A, B {
    double getVolume();
}



SoftServe Confidential

Polymorphism
• Polymorphism is the concept, according to which a common interface used for 

data processing various specialized types.

• Java code uses late binding technique to support polymorphism and the 
method to be invoked is decided at runtime

abstract public class Shape {
    public abstract double getArea();
}

public class Square extends Shape {
    @Override
    public double getArea() {
        return side * side;
    }
}

public class Circle extends Shape {
    @Override
    public double getArea() {
        return Math.PI * radius*radius;
    }
}

superclass

subclass subclass



SoftServe Confidential

The instanceof Operator
• The instanceof operator allows you determine the type of an object.

Shape shapes[] = {
        new Square(7.2, "MySquare"),
        new Circle(5.8, "MyCircle"),
        new Cube(6.7, "MyCube"),
        new Ball(6.3, "MyBall")
};

for (Shape shape : shapes) {
    double area = shape.getArea();
    System.out.println(area);
    
    if (shape instanceof Volumetric) {
        double volume = ((Volumetric) shape).getVolume();
        System.out.println(volume);
    }
}



SoftServe Confidential

Polymorphism

public abstract class ACar {
    private double maxSpeed;

    public double getMaxSpeed( ) { return maxSpeed; }

    public void setMaxSpeed(double maxSpeed) {
        this.maxSpeed = maxSpeed;
    }

    abstract void carRides( );
}



SoftServe Confidential

Polymorphism

public class BmwX6 extends ACar {
   public BmwX6( ) { }

   @Override
   public void carRides( ) {
       setMaxSpeed(200);
       System.out.println("Car Rides");
       workedEngine( );
       workedGearBox( );
   }

   



SoftServe Confidential

Polymorphism

 public void workedEngine( ) {
       System.out.println("BmwX6: Engine Running on Petrol.");
       System.out.println("BmwX6: Max Speed: " + getMaxSpeed( ));
   }
 
 private void workedGearBox( ) {
        System.out.println("BmwX6: Worked GearBox.");
 }

 public void lightsShine( ) { 
    System.out.println("BmwX6: Halogen Headlights.");
 }
}

Are private fields and methods inherited?



SoftServe Confidential

Polymorphism

public class BmwX6mod extends BmwX6 {
    public BmwX6mod( ) { super( ); }

    @Override
    public void workedEngine( ) {
        System.out.println("BmwX6mod: Engine Running on Diesel.");
        System.out.println("BmwX6mod: Max Speed: " + getMaxSpeed( ));
    }

    @Override
    public void lightsShine( ) {
        System.out.println("BmwX6mod: Xenon Headlights.");
        super.lightsShine();
    }
}



SoftServe Confidential

Polymorphism
public class Appl {
    public static void main(String[ ] args) {
        ACar carX6 = new BmwX6( );

  carX6.carRides( );
        ((BmwX6)carX6).lightsShine( );

  ACar carX6mod = new BmwX6mod( );
        carX6mod.carRides( );
        ((BmwX6)carX6mod).lightsShine( );

  
  BmwX6 carX6mod2 = new BmwX6mod( );

        carX6mod2.carRides( );
        carX6mod2.lightsShine( );
    }
}



SoftServe Confidential

Sorting

public static void main(String[] args) {
      int[] x = new int[10];

Random rand = new Random();
      for (int i = 0; i < x.length; i++) {

x[i] = rand.nextInt(10);
      }
      Arrays.sort(x);
      for (int i = 0; i < x.length; i++) {
         System.out.println(x[i]);
      }
   } What is wrong in the code

• Write a new code for type double, etc.
• Do you need to constantly create "bicycle" ?
• You may use an existing solution



SoftServe Confidential

Class Arrays. Sorting

public static void main(String[ ] args) {

        Student[ ] students = new Student[3];

        students[0] = new Student(52645, "Oksana");

        students[1] = new Student(98765, "Bogdan");

        students[2] = new Student(1354, "Orest");

        Arrays.sort(students);

        for (int i = 0; i < students.length; i++) {

            System.out.println(students);

  }   

}   

What will happen?



SoftServe Confidential

Compare elements

To specify the order of the following interfaces: Comparable and Comparator
   public class MyType implements Comparable {

       String name;

       public int compareTo(Object obj) {

          return name.compareTo(((MyType)obj).name);

       }  

   }
Comparable to specify only one order.
Method compareTo can return 

• 0, if objects are equal
• <0 (-1), if first object is less than second object
• >0 (1), if first object is great than second object



SoftServe Confidential

Interface Comparable
• Interface Comparable allows custom sorting of objects when implemented. 

• When a class implements this interface, we must add the public method 
compareTo(Object o).

public class Person implements Comparable<Person> {
    private String name;
    private int age;

    @Override
    public int compareTo(Person p) {
        if (this.name.compareTo(p.name) != 0 )
            return this.name.compareTo(p.name);
        else
            return Integer.compare(this.age, p.age);
    }
}



SoftServe Confidential

Interface Comparable
• Example: Person people[] = {

        new Person("Bill", 34),
        new Person("Tom", 23),
        new Person("Alice", 21),
        new Person("Bill", 27)
};

for (Person person : people) {
    System.out.println(person);
}

Arrays.sort(people);

for (Person person : people) {
    System.out.println(person);
}

Name: Bill, age: 34
Name: Tom, age: 23
Name: Alice, age: 21
Name: Bill, age: 27

Name: Alice, age: 21
Name: Bill, age: 27
Name: Bill, age: 34
Name: Tom, age: 23



SoftServe Confidential

Interface Comparator

• Interface Comparator allows custom sorting of objects when 
implemented. 

• When a class implements this interface, we must add the public method 
compare(Object o1, Object o2).

• Methods compare can throw an exception ClassCastException, if the 
object types are not compatible in the comparison.



SoftServe Confidential

Example 1

public class Employee {
    int tabNumber;
    String name;

    public Employee(String name, int tabNumber) {
        this.name = name;
        this.tabNumber = tabNumber;
    }

    @Override
    public String toString() {
        return "Employee [tabNumber=" + tabNumber + ", name=" + name + "]";
    }
}



SoftServe Confidential

Example 1
import java.util.Comparator;
public class NameComparator implements Comparator<Employee>{
    @Override
    public int compare(Employee o1, Employee o2) {
        return o1.name.compareTo(o2.name);
    }
}
-------------------------------------------------------------
import java.util.Comparator;
public class TabComparator implements Comparator<Employee>{
    @Override
    public int compare(Employee o1, Employee o2) {
        return o1.tabNumber - o2.tabNumber;
    }
}



SoftServe Confidential

Example 1

import java.util.ArrayList;
import java.util.List;
public class Main {
    public static void main(String[] args) {
      List<Employee> list = new ArrayList<Employee>();

      list.add(new Employee("Vasya", 15));
      list.add(new Employee("Anna", 2));
      list.add(new Employee("Alina", 40));

      



SoftServe Confidential

Example 1

  list.sort(new NameComparator());
        for (Employee employee : list) {
            System.out.println(employee);
        }

 list.sort(new TabComparator());
        for (Employee employee : list) {
            System.out.println(employee);
        }
    }   
}



SoftServe Confidential

Example 2

public class Employee {

    int tabNumber; 

    String name;

    static NameComparator nameComparator = new NameComparator( );

    static TabComparator tabComparator = new TabComparator();

    public static Comparator getNameComparator( ) {

        return nameComparator;

    }

    public static Comparator getTabComparator( ) {

        return tabComparator;

    }

Add get() and set() methods



SoftServe Confidential

Example 2

static class NameComparator implements Comparator {

  public int compare(Object o1, Object o2) {

    return ((Employee)o1).getName().compareTo(((Employee)o2).getName());

  }

}

static class TabComparator implements Comparator {

  public int compare(Object o1, Object o2) {

    return ((Employee)o1).getTabNumber() – ((Employee)o2).getTabNumber();

  }

} . . . }



SoftServe Confidential

Example 2

public static void main(String[] args) {
Set<Employee> set = new TreeSet(Employee.getNameComparator());
set.add(new Employee(15, "Vasya"));
set.add(new Employee(2, "Anna"));
set.add(new Employee(40, "Alina"));
System.out.println(set);

Set<Employee> set1 = new TreeSet(Employee.getTabComparator());
set1.addAll(set);
System.out.println(set1);

}



SoftServe Confidential

Class Diagram. Visibility and scope 

Symbol Access

+ public

- private

# protected



SoftServe Confidential

Class Diagram



SoftServe Confidential

Class Diagram

Our class diagram has three kinds of relationships.

association -- a relationship between instances of the two classes. There is an 
association between two classes if an instance of one class must know about the other 
in order to perform its work. In a diagram, an association is a link connecting two 
classes. 

aggregation -- an association in which one class belongs to a collection. An 
aggregation has a diamond end pointing to the part containing the whole. In our 
diagram, Order has a collection of OrderDetails. 

generalization -- an inheritance link indicating one class is a superclass of the other. A 
generalization has a triangle pointing to the superclass. Payment is a superclass of 
Cash, Check, and Credit. 



SoftServe Confidential

Class Diagram. Multiplicities

Multiplicities Meaning

0..1
zero or one instance. 
The notation n . . M indicates n to m 
instances.

0..*  or  * no limit on the number of instances 
(including none).

1 Exactly one instance

1..* at least one instance



SoftServe Confidential

Composition and aggregation



SoftServe Confidential

Dependencies and constraints



SoftServe Confidential

Interfaces and stereotypes



SoftServe Confidential

final
A final variable can only be assigned once and its value cannot be modified once 
assigned. 

Constants are variables defined 
final double RADIUS = 10;

A final method cannot be overridden by subclasses

public final void myFinalMethod() {...}

A final class cannot extend
public final class MyFinalClass {...}



SoftServe Confidential

Practical tasks

1. Create interface Animal with methods voice() and feed(). Create two classes Cat and Dog, which 
implement this interface. Create array of Animal and add some Cats and Dogs to it. Call voice() and 
feed() method for all of it

2. Create next structure. In abstract class Person with property 
name, declare abstract method print(). In other classes in 
body of method print() output text “I am a …”. In class Staff 
declare abstract method salary(). In each concrete class 
create constant TYPE_PERSON. Output type of person in 
each constructors. Create array of Person and add some 
Teachers, Cleaners and Students to it. Call method print() for 
all of it. Call method salary() for all Teachers and Cleaner



SoftServe Confidential

HomeWork (online course)

• UDEMY course "Java Tutorial 
for Complete Beginners": 
https://www.udemy.com/java-
tutorial/

• Complete lessons 26-31:



SoftServe Confidential

Homework

1. Create Payment interface with the method calculatePay(), the base class 
Employee with a string variable employeeld. 
Create two classes SalariedEmployee and ContractEmployee, which 
implement interface and are inherited from the base class. 
• Describe hourly paid workers in the relevant classes (one of the children), 

and fixed paid workers (second child). 
• Describe the string variable socialSecurityNumber in the class 

SalariedEmployee .
• Include a description of federalTaxIdmember in the class of 

ContractEmployee.



SoftServe Confidential

Homework

• The calculation formula for the "time-worker“ is: the average monthly 
salary = hourly rate * number of hours worked

• For employees with a fixed payment the formula is: the average monthly 
salary = fixed monthly payment

• Create an array of employees and add the employees with different form of 
payment.

• Arrange the entire sequence of workers descending the average monthly 
wage. Output the employee ID, name, and the average monthly wage for all 
elements of the list.



SoftServe Confidential

Homework
2. Develop and test a program’s structure corresponding to the next 
schema



THANKS


