Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ТГУ)

Факультет геолого-географический Кафедра палеонтологии и исторической геологии

ДИПЛОМНАЯ РАБОТА

ГИДРОРАЗРЫВ ПЛАСТА НА ПРИМЕРЕ НЕФТЕГАЗОКОНДЕНСАТНОГО МЫЛЬДЖИНСКОГО МЕСТОРОЖДЕНИЯ (ТОМСКАЯ ОБЛАСТЬ)

по специальности 21.05.02 – Прикладная геология

Тараненко Дарья Сергеевна

студент группы 02580 Д.С. Тараненко

Научный руководитель: к.г.-м.н., доцент С. В. Максиков

Томск 2021

ВВЕДЕНИЕ

Объектом исследования является Мыльджинское нефтегазоконденсатное месторождение.

Цель:

1. Провести анализ эффективности ГРП, на исследуемом объекте.

Задачи:

- 1. Определить критерии выбора скважин для ГРП;
- 2. Провести анализ проводимых работ ГРП

Мыльджинское нефтегазоконденсатное месторождение расположено в Каргасокском районе Томской области в 450 км к северо-западу от областного центра и в 70 км севернее разрабатываемого Лугинецкого нефтегазового месторождения.

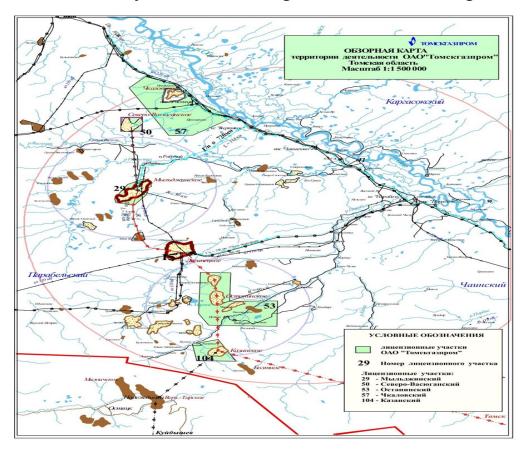
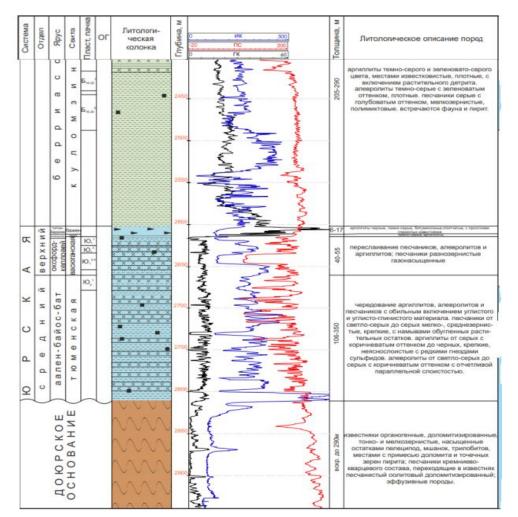



Рисунок 1 - Обзорная карта района

Условные обозначения Химический состав подземных вод Пески CI, ser-seasin Na+K, ser-sealn Глины HCO3, wr-ava/n Аргиппипы Св. му-эквіл Mg, ar-avain Алевролиты Аргиллиты битуминозные Минерализация, г/п Водоносный комплекс Породы складчатого фундамента Температура

Рисунок 2 — Сводный литолого-стратиграфический разрез

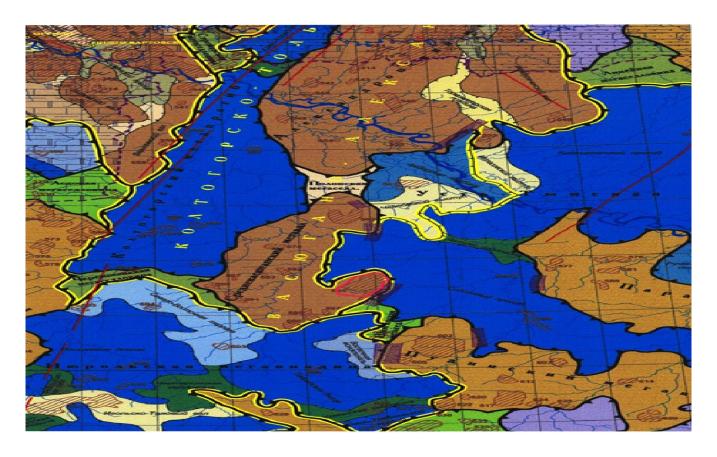


Рисунок 3 - Выкопировка из «Тектонической карты центральной части Западно-Сибирской плиты» (под ред. В.И.Шпильмана, Н.И.Змановского, Л. Л.Подсосовой, 1998г.)

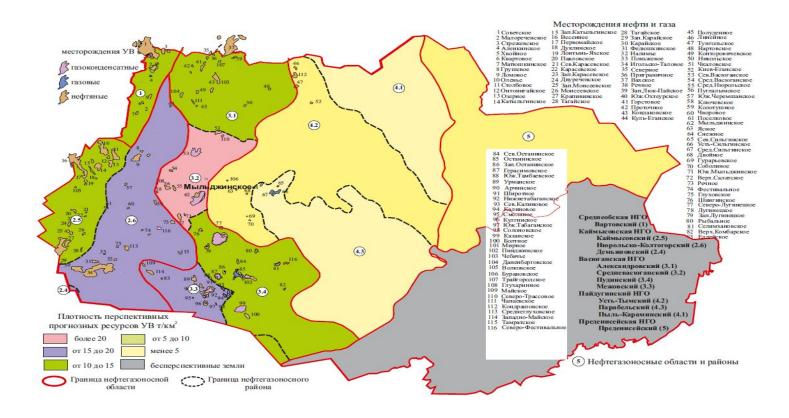
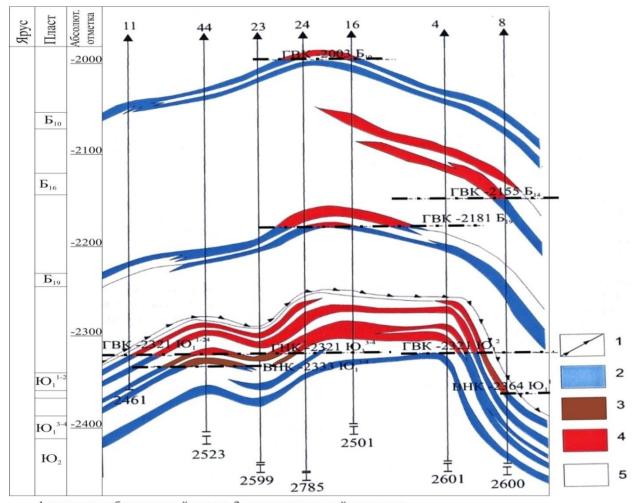



Рисунок 4 - Нефтегазогеологическое районирование Томской области (по Г.И.Тищенко, 2009г.)

1-аргиллиты баженовской свиты, 2-водонасыщенный песчаник, 3-нефтенасыщенный песчаник, 4-газовое насыщение пласта, 5-непроницаемые породы

Рисунок 5 - Сводный геологический разрез Мыльджинского месторождения

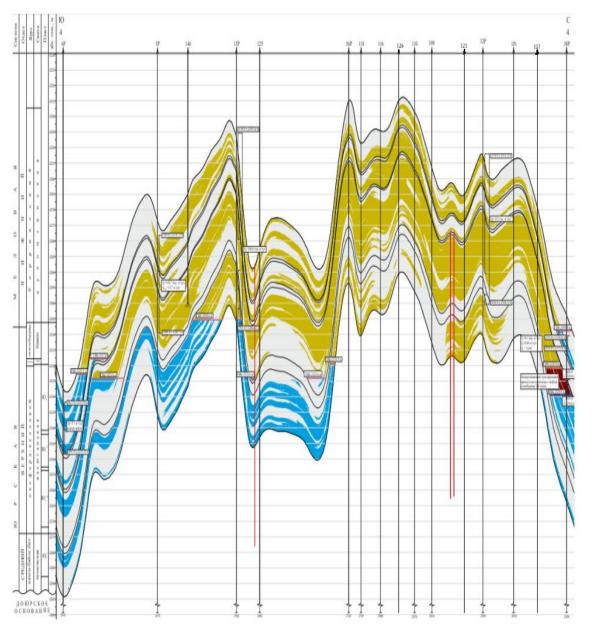


Рисунок 6 - Геологический профиль продуктивных отложений пластов ${\cal W}_1^{\ l}, \, {\cal W}_1^{\ 2}, \, {\cal W}_1^{\ 3-4}, \, {\cal W}_2^{\ l}$

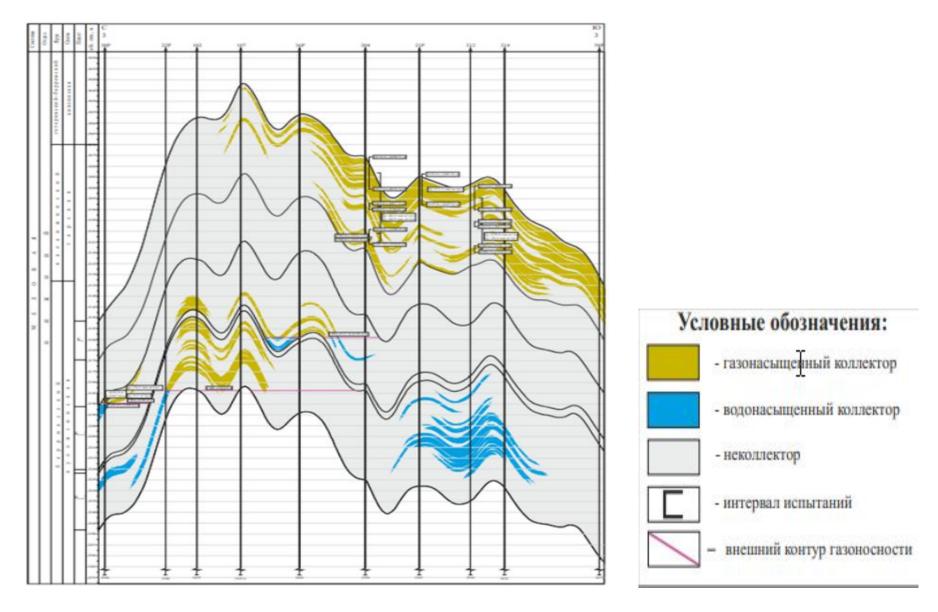


Рисунок 7 - Геологический профиль продуктивных отложений пластов B_{10} , B_{16-20}^{1}, B_{16-20}^{2}

Гидравлический разрыв пласта (ГРП) – один из методов интенсификации работы нефтяных и газовых скважин и увеличения приёмистости нагнетательных скважин.

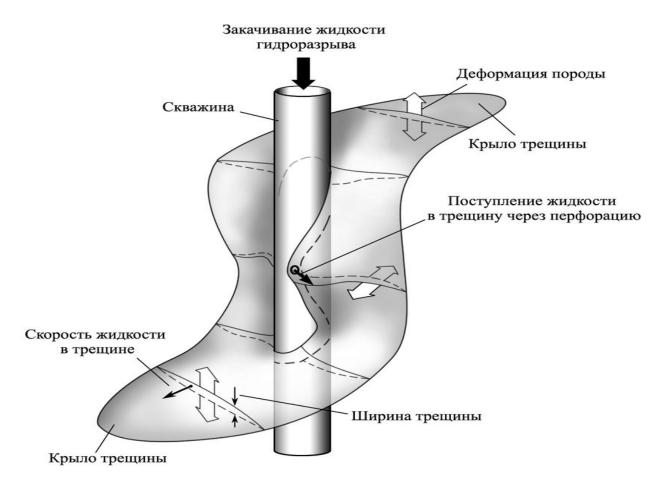
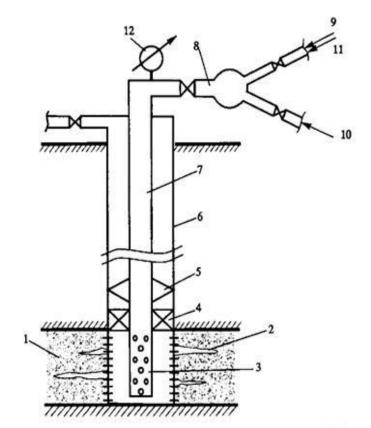


Рисунок 8 – Схематическая картина процесса ГРП

Оборудование для ГРП:


- скважинное;
- наземное.

К скважинному оборудованию относится:

- пакер;
- гидрвлический якорь;
- герметизатор устьевой;
- центробежная задвижка.

<u>К наземному оборудованию</u> <u>относится:</u>

- насосы высокого давления;
- смесительная установка ГРП;
- блок монифольдов.

Принципиальная схема оборудования скважины для проведения ГРП:

1 — продуктивный пласт; 2 — трещина; 3 — хвостовик; 4 — пакер; 5 — якорь; 6 — обсадная колонна; 7 — колонна НКТ; 8 — устьевое оборудование; 9 — жидкость разрыва; 10 — жидкость-песконоситель; 11 — жидкость продавки; 12 — манометр

Рисунок 9 – Схема оборудования для ГРП

Основными и главными материалами для ГРП являются:

- жидкость разрыва;
- добавки к жидкости разрыва;
- закрепляющие агенты.

Жидкость разрыва по основанию делится:

- водяная основа;
- нефтяная основа;
- пенной основа;
- на основе эмульсии.

Добавки к жидкости разрыва:

- буферные агенты;
- стабилизаторы глин;
- деэмульгаторы;
- деструкторы.

Закрепляющие агенты:

- песок;
- проппант средней прочности;
- высокопрочный проппант.

Актуальность выполнения ГРП:

Низкая продуктивность скважин, загрязнение призабойной зоны вследствие произведенных ранее ремонтных операций, неравномерность выработки запасов, вовлечение новых запасов в зону дренирования скважины.

Для составления программы проведения ГРП на Мыльджинском месторождении, фонд скважин был проанализирован по следующим критериям:

- 1. Угол входа ствола скважины в пласт;
- 2. Техническое состояние эксплуатационной колонны;
- 3. Текущий дебит газа;
- 4. Запасы газа в радиусе 500 м от скважины;

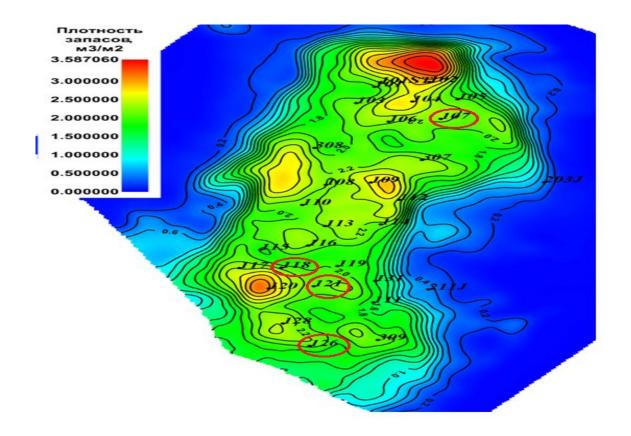


Рисунок 10 – Скважины, на которых планируется проведение ГРП, выделенные на карте остаточных запасов газа объекта Ю

Также было оценено площадное распределение скважин. Для этого на карте остаточных запасов газа объекта Ю были выделены скважины, на которых планируется проведение ГРП.

№ скважин ы	Пласт	Литология	Н _{эф.} м.	К _{пр} мД.	К _{по.}	К _{гл.} %	R _{пл.} Ом*м
126	Ю ₁ ³⁻⁴	Песчаник с прослоями глины и глинистый песчаник	20,4	4,6	14,9	11,4	14,9
107	Ю ₁ ^{3–4}	Песчаник с прослоями глины и глинистый песчаник	20,8	18	16,5	14,9	14,4
118	Ю ₁ ³⁻⁴	Песчаник с прослоями глины и глинистый песчаник	22,6	2,85	16,4	16,1	30,9
121	Ю ₁ ³⁻⁴	Песчаник с прослоями глины и глинистый песчаник	23,4	15,1	17,3	8,9	15,4

Таблица 1 - Коллекторские свойства скважин по ГИС на которых проводилось ГРП

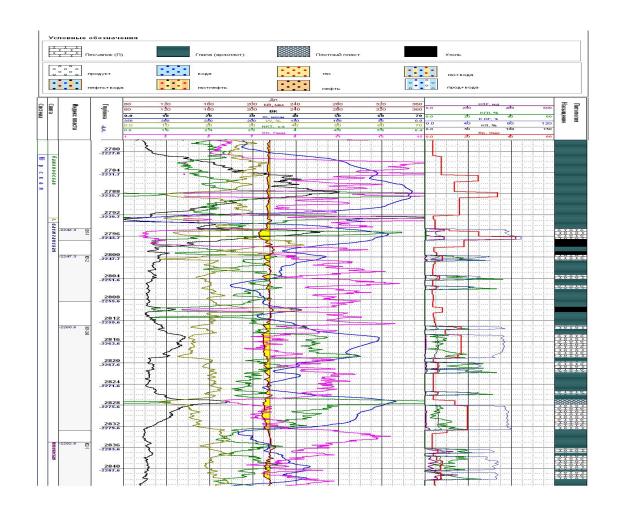


Рисунок 11 — Определение фильтрационно-емкостных свойств и характера насыщения коллекторов юрских отложения скв. 126 МНГКМ

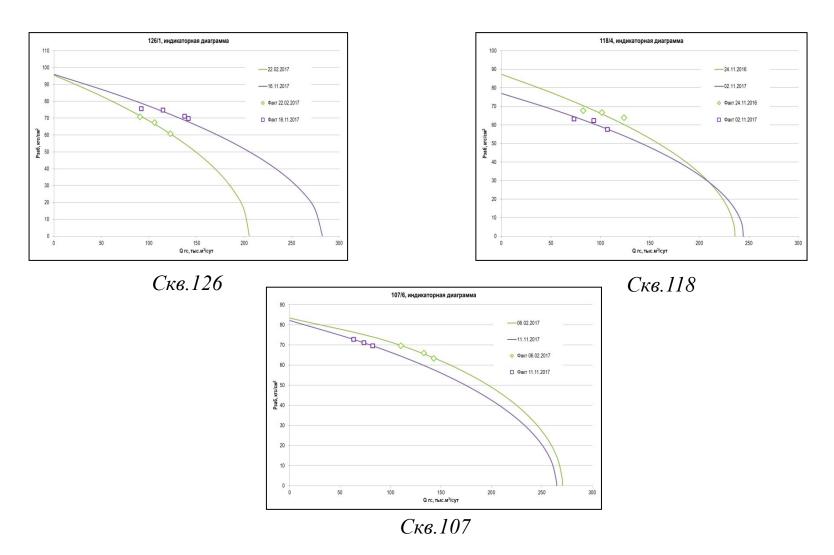


Рисунок 13 - Сравнение индикаторных диаграмм до и после ГРП

№ скважины	Рпл, МПа	Проницаемость, мД		Скин-фактор		Дебит, т.м3/сут	
		До ГРП	После	До	После	До ГРП	После
			ГРП	ГРП	ГРП	дотти	ГРП
126	12	5,74	3,72	1,47	-4,88	123	145
107	9	18	17,6	4,68	5,7	145,6	77,5
118	9,6	2,85	14,6	-4,5	5,2	129	93,2
121	8,3	15,1	18,1	7,26	1,23	105,4	104

Таблица 2 - Гидродинамические характеристики пластов-коллекторов и дебиты скважин на которых проводилось ГРП

Отрицательный эффект ГРП наблюдается на скважине 107 Мыльджинского месторождения и скважине 118.

Положительный эффект наблюдается по скважине 126.

Скважина, работающая с дебитом, аналогичным дебиту до $\Gamma P\Pi - 121$.

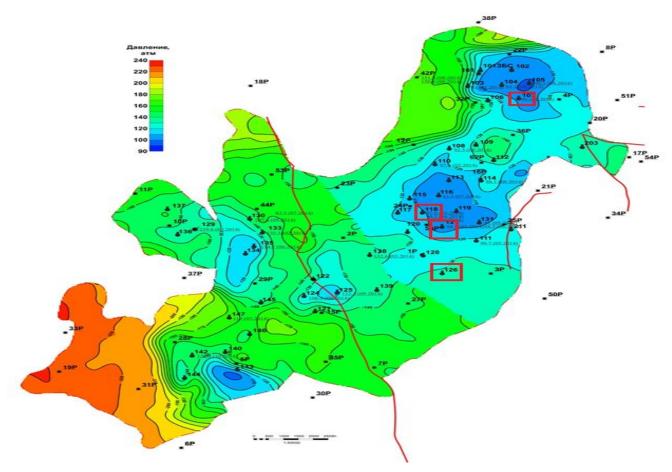


Рисунок 14 - Расположение скважин, на которых проведено ГРП на карте давлений объекта Ю

Сильные поглощения жидкости глушения в процессе нормализации забоя скважины приводят к длительному выводу скважины на режим работы, так как энергии пласта не хватает чтобы вытеснить всю жидкость закаченную в пласт.

Со снижением пластового давления на режиме истощения проведение ГРП будет привносить меньший эффект.

Возможно, что длительное нахождение водного раствора в песчаной породе коллектора, скорее всего, приводит к набуханию глинистых частиц, которыми породы сцементированы, что так же снижает подвижность флюида в пласте.

В последующем производить ГРП на скважинах Мыльджинского месторождения нецелесообразно.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Состояние минерально-сырьевой базы Томской области // Состояние окружающей среды Томской области в 2010 году: Экологический мониторинг. Томск, 2011.
- 2. Ширковский А. И. Разработка и эксплуатация газовых и газоконденсатных месторождений. "Недра", 1987 г.
- 3. Коротаев Ю.П. Эксплуатация газовых месторождений. Недра, 1975 г.
- 4. Тер-Саркисов Р.М. Разработка месторождений природных газов. М.: Недра, 1999 г;
- 5. Правила разработки газовых и газоконденсатных месторождений., М., "Недра", 1971 г.
- 6.Желтов Ю.В., Мартос В.Н., Мирзаджанзаде А.Х., Степанова Г.С. Разработка и эксплуатация нефтегазоконденсатных месторождений. М.: Недра, 1979 г.
- 7.Закиров С.Н., Лапук Б.Б. Проектирование и разработка газовых месторождений. -М.: Недра, 1974 г.
- 8.Инструкция по комплексному исследованию газовых и газоконденсатных пластов и скважин., "Недра", 1980 г.
- 9. Кристман М. Увеличение продуктивности и приемистости скважин., М., "Недра", 1985 г.
- 10. Гриценко А.И., Тер-Саркисов Р.М., Шандрыгин А.Н., Подюк В.Г. Методы повышения продуктивности газоконденсатных скважин. М.: Недра, 1997 г.
- 11. Закиров С.Н., Кондрат Р.М. Активное воздействие на процесс разработки месторождений природных газов с целью повышения углеводородоотдачи пластов // Доклады международной конференции "Разработка газоконденсатных месторождений". Секция 3. Разработка нефтегазоконденсатных месторождений. Краснодар, 1990 г.
- 12. Технико экономическое обоснование освоения газовых и газоконденсатных месторождений Томской области. ТомскНИПИнефть, 1995 г.
- 13. «Дополнение к технологической схеме разработки Мыльджинского нефтегазоконденсатного месторождения Томской области». ОАО «Томскгазпром», 2015 г.

СПАСИБО ЗА ВНИМАНИЕ!