

ВВОДНЫЙ ИНСТРУКТАЖ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ. ПЕРИОДИЧЕСКИЙ ЗАКОН Д.И. МЕНДЕЛЕЕВА.

Открытие Периодического закона

Открытию периодического закона предшествовало накопление знаний о веществах и свойствах. По мере открытия новых химических элементов, изучения состава и свойств их соединений появлялись первые классифицировать элементы по каким-либо признакам. общей сложности до Д.И. Менделеева было предпринято более 50 попыток классификации химических элементов. Ни одна из попыток не привела к созданию системы, отражающей взаимосвязь элементов, выявляющей природу их сходства и различия, имеющей предсказательный характер.

Открытие Периодического закона

В основу своей работы по классификации химических элементов Д.И. Менделеев положил два их основных и постоянных признака: величину атомной массы и свойства образованных химическими элементами веществ. Он выписал на карточки все известные сведения об открытых и изученных в то время химических элементах и их соединениях. Сопоставляя эти сведения, учёный составил естественные группы сходных по свойствам элементов. При этом он обнаружил, что свойства элементов в некоторых пределах изменяются линейно (монотонно усиливаются или ослабевают), затем после резкого скачка повторяются периодически, т.е. через определённое число элементов встречаются сходные.

Что же было обнаружено?

При переходе от лития к фтору происходит закономерное ослабление металлических свойств и усиление неметаллических.

При переходе от фтора к следующему по значению атомной массы элементу натрию происходит скачок в изменении свойств (Na повторяет свойства Li)

За Na следует Mg, который сходен с Be - они проявляют металлические свойства. A1, следующий за Mg, напоминает B. Как близкие родственники, похожи Si и C; P и N; S и O; C1 и F.

При переходе к следующему за С1 элементу К опять происходит скачок в изменении и химических свойств.

Периодическая закон Д.И. Менделеева

Если написать ряды один под другим так, чтобы под литием находился натрий, а под неоном — аргон, то получим следующее расположение элементов:

Li Be B C N O F Ne

Na Mg Al Si P S Cl Ar

Периодическая закон Д.И. Менделеева

Li Be B C N O F Ne Na Mg Al Si P S Cl Ar

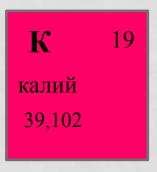
При таком расположении в вертикальные столбики попадают элементы, сходные по своим свойствам.

Первый вариант Периодической таблицы

опыть системы элементовъ,

освованной на ихъ атомнось въсъ и хивическось сходствь.

```
T1=50 Zr= 90 ?=180.
                   V=51 Nb = 94 Ta = 182.
                  Cr=52 Mo- 98 W-186.
                  Mn = 55 Rh = 104,4 Pt = 197,4
                  Fe=56 Ru=1044 Ir=198.
             Ni=Co-59 Pi-106, Os-199.
 H-1
                  C_0 = 63 Ag = 108 Hg = 200.
     Be- 9/ Mg-24 Zn-65,2 Cd-112
     B-11 Al-27,4 ?=68 Ur=116 Au=197?
     C-12 Si-28 ?-70 Sp-118
     N=14 P=31 As=75 Sb=122 Bi=210?
     0-16 S-32 Se=79,4 Te=128?
     F=19 C1-35,sBr=80 I=127
Li=7 Na =28 K=39 Rb=864 Cs=188 Tl=204.
            Ca =40 Sr = 87 A Ba = 137 Pb = 207.
             ?-45 Ce-92
           7Er=56 La=94
           ?Yt-60 Di-95
           ?In=75,4Th=118?
```


Ha основании СВОИХ наблюдений 1 марта 1869 г. Д. И. Менделеев сформулировал периодический закон, который начальной своей формулировке звучал свойства простых тел, также формы и свойства соединений элементов находятся в периодической зависимости от величин атомных весов элементов

Д. Мондольных

Периодическая таблица Д.И. Менделеева

Уязвимым моментом периодического закона сразу после его открытия было объяснение причины периодического повторения свойств элементов с увеличением относительной атомной массы их атомов. Более того, несколько пар элементов расположены в Периодической системе с нарушением увеличения атомной массы. Например, аргон с относительной атомной массой 39,948 занимает 18-е место, а калий с относительной атомной массой 39,102 имеет порядковый номер 19.

Ar 18 аргон 39,948

Периодический закон Д.И. Менделеева

Только с открытием строения атомного ядра и установлением физического смысла порядкового номера элемента стало понятно, что в Периодической системе расположены *в порядке увеличения положительного заряда их атомных ядер.* С этой точки зрения никакого нарушения в последовательности элементов $_{18}{\rm Ar} - _{19}{\rm K}, _{27}{\rm Co} - _{28}{\rm Ni}, _{52}{\rm Te} - _{53}{\rm I}, _{90}{\rm Th} - _{91}{\rm Pa}$ не существует. Следовательно, современная трактовка Периодического закона звучит следующим образом:

Свойства химических элементов и образуемых ими соединений находятся в периодической зависимости от величины заряда их атомных ядер.

Периодическая таблица химических элементов

Открытый Д. И. Менделеевым закон и построенная на основе закона периодическая система элементов - это важнейшее достижение химической науки.

Периодическая таблица химических элементов

Периоды - горизонтальные ряды химических элементов, всего 7 периодов. Периоды делятся на малые (I,II,III) и большие (IV,V,VI), VII-незаконченный.

Каждый период (за исключением первого) начинается типичным металлом (Li, Na, K, Rb, Cs, Fr) и заканчивается благородным газом (He, Ne, Ar, Kr, Xe, Rn), которому предшествует типичный неметалл.

П	EP1	ЮДІ	۸r	HEC	K/	R	CV	1CT	EN	ЛΑ	ΧV	1MI	14	EC	КИ	X	ЭЛЕ	EME	HTOE	Д.	N.N	ΛE	НДЕЛЕЕВА
Пори					Г	Р	У	П	П	Ы	Э	Л	E	M	E I	н 1	т о	В				еские	www.calc.ru
Пери одь	Ряды	1				1	H	l,	V	V		V	/1	V	11			VII	I			уровн	
		a	б	а	б	a	б	a	б	a	б	a	б	a	б			б			a	A.	A Property N
1	1	Н водород 1,008	1																	Не гелий 4,003	2	к	
2	2	Li литий 6,941	3	Ве 6ЕРИЛЛИ 9,0122	4 tй 2	B 50P 10,811	5	С углеро 12.011	6 д	N A30T 14,007	7	О кислор 15,999	8 Род	Г фтор 18,998	9 7					Ne HEOH 20,179	10	L K	
3	3	Na натрий 22,99	11	Мg магний 24,312	12	А] АЛЮМИ 26,092	13 ний	Si KPEMHI 28,086	14 ий	Р фосфор 30,974	15	S CEPA 32,064	16	СI хлор 35,453	17 7 8 2					Аг АРГОН 39,948	18	B M	Д.И. Менделеев

Периодическая таблица химических элементов

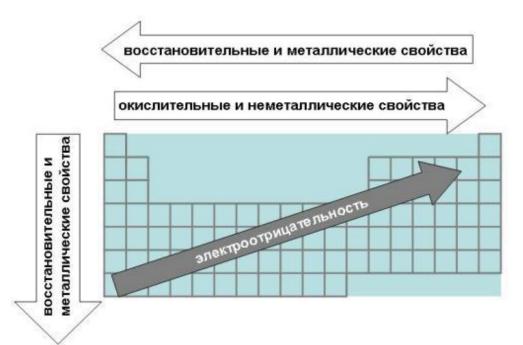
Группы - вертикальные столбцы элементов с одинаковым числом электронов на внешнем электронном уровне, равным номеру группы.

Различают главные (А) и побочные подгруппы (Б).

Главные подгруппы состоят из элементов малых и больших периодов.

Побочные подгруппы состоят из элементов только больших периодов.

Окислительно-восстановительные свойства


Поскольку окислительно — восстановительные свойства атомов оказывают влияние на свойства простых веществ и их соединений, то металлические свойства простых веществ элементов главных подгрупп возрастают, в периодах — убывают, а неметаллические — соответственно, наоборот — в главных подгруппах убывают, а в периодах — возрастают.

Окислительно-восстановительные свойства

Восстановительные свойства атомов (способность терять электроны при образовании химической связи) в главных подгруппах возрастают, в периодах — уменьшаются.

Окислительные (способность принимать электроны), наоборот, - в главных подгруппах уменьшаются, в периодах

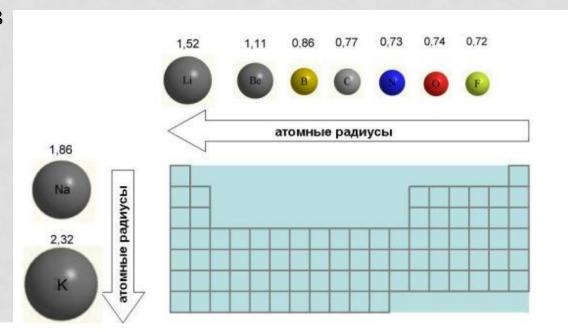
- возрас

Электроотрицательность

Электроотрицательность в периоде увеличивается с возрастанием заряда ядра химического элемента, то есть слева направо. В группе с увеличением числа электронных слоев электроотрицательность уменьшается, то есть сверху вниз. Значит самым электроотрицательным элементом является фтор (F), а ций (Fr).

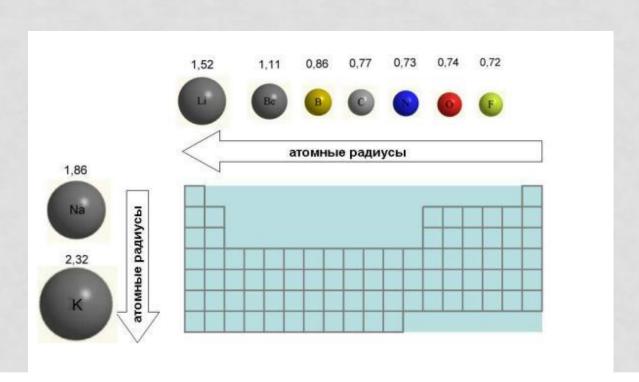
восстановительные и металлические свойства

окислительные и неметаллические свойства


окислительные и неметаллические свойства

в запилические образования образов

Изменение радиуса атома в периоде


Радиус атома с увеличением зарядов ядер атомов в периоде уменьшается, т.к. притяжение ядром электронных оболочек усиливается. В начале периода расположены элементы с небольшим числом электронов на внешнем электронном слое и большим радиусом атома. Электроны, находящиеся дальше от ядра, легко от него отрываются, что характерно для элементов-

металлов

Изменение радиуса атома в группе

В одной и той же группе с увеличением номера периода атомные радиусы возрастают. Атомы металлов сравнительно легко отдают электроны и не могут их присоединять для достраивания своего внешнего электронного слоя.

ПРОАНАЛИЗИРУЙТЕ И СДЕЛАЙТЕ ВЫВОД

Х.Э.	Li	Ве	В	С	N	0	F	
Тип элемен та	Me	Me	неМе	неМе	неМе	неМ е	неМ е	
Формул а оксида	Li2O	BeO	B2O3	CO2	N2O5	_	_	
Характ ер	ОСНОВ	амф	КИСЛ	КИСЛ	КИСЛ			
Формул а гидрокс ида	LiOH	Be(OH) 2	НЗВОЗ	H2CO3	HNO3	-	_	
Характ ер	ОСНОВ	амф	КИСЛ	КИСЛ	КИСЛ			

ВЫВОД:

Металлические свойства убывают, а неметаллические - возрастают

Степень окисления элементов в высших оксидах и гидроксидах увеличивается от +1 до +7

Характер оксидов меняется от основного через амфотерные сменяются на кислотный

Характер гидроксидов меняется от основного через амфотерные сменяются на кислотный