Эксплуатационные свойства машинно-тракторных агрегатов

Эксплуатационные свойства машин и агрегатов.

Эксплуатационные показатели и режимы работы тракторных двигателей.

Баланс мощности трактора.

Силы, действующие на трактор.

Сцепные свойства трактора и пути их улучшения.

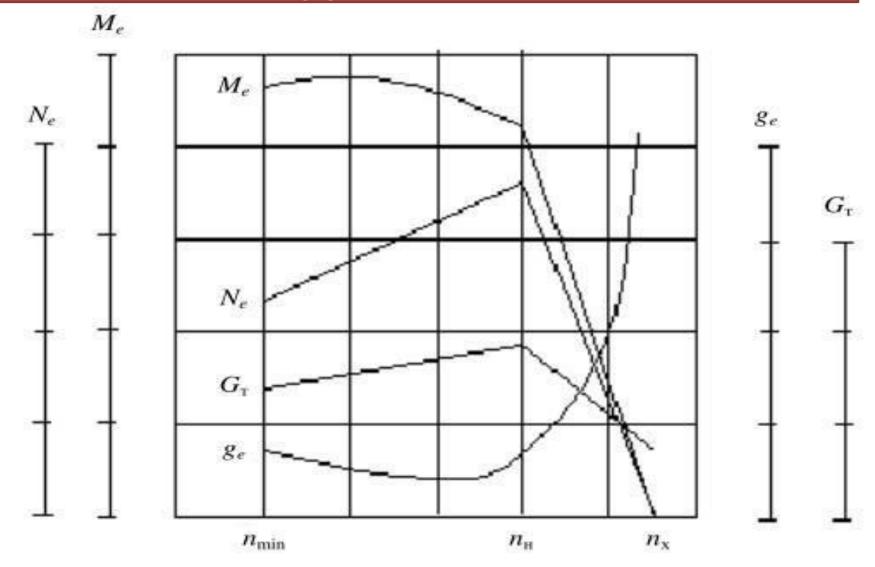
Уравнение движения агрегата.

Тяговый баланс трактора.

Тяговая характеристика трактора.

Эксплуатационные свойства машин и агрегатов.

Качественно-эксплуатационные свойства отдельных машин и агрегатов оценивают соответствующими показателями, которые подразделяют на следующие основные группы:


- технологические,
- экологические,
- энергетические,
- экономические,
- эргономические,
- надежности.

Эксплуатационные показатели и режимы работы тракторных двигателей.

Основные эксплуатационные показатели однотипных дизельных двигателей с всережимными регуляторами характеризуются: эффективной мощностью, вращающим моментом, частотой вращения коленчатого вала, часовым и удельным расходами топлива, которые связаны между собой следующими соотношениями:

$$N=105Mn$$
 $g_e=10^3G_T/N$ где N - эффективная мощность, кВт; M -вращающий момент, к H *м; n - частота вращения коленчатого вала, мин $^{-1}$; g_e - удельный расход топлива, г/к B т*ч; G_T - часовой расход топлива, кг/ч.

Регуляторная характеристика двигателя

Область характеристики с максимальным значением мощности двигателя называется областью номинального значения мощности $N_{e_{\rm H}}$. Значению $N_{e_{\rm H}}$ соответствуют номинальный крутящий момент $M_{e_{\rm H}}$, номинальный часовой $G_{\rm T_H}$ и удельный $g_{e_{\rm H}}$ расходы топлива, а также номинальная частота вращения коленчатого вала двигателя $n_{e_{\rm H}}$. Работа двигателя в номинальном режиме наиболее предпочтительна. Зна-

1.1. Показатели скоростных характеристик двигателей

Двигатель (трактор)	$\frac{n_t}{\frac{\text{MUH}^{-1}}{\text{c}^{-1}}}$	Значение показателей			
		M_e , кНм	N_e , кВт	$G_{\rm r}$, кг/ч	g_e , г/(к B т-ч)
1	2	3	4	5	6
Д-21 (T-16M, T-25)	$\frac{1700}{28,3}$	0	0	1,1	œ
	$\frac{1670}{27,8}$	0,025	4,4	2,0	454
	1640 27,3	0,053	9,1	2,9	320

Самостоятельная работа

• Описать изменение эксплуатационных характеристик двигателя по графику

Баланс мощности трактора.

Уравнение, показывающее зависимость эффективной мощности N_e (кВт) двигателя от преодолеваемых трактором сопротивлений, называется уравнением тягового баланса, которое в общем случае представляют в следующем виде:

$$N_e = N_{\text{TP}} + N_{\delta} + N_f \pm N_i + N_j + N_{\kappa p} + N_{B0M} + N_{\text{np}},$$

где $N_{_{TD}}$ — потери мощности на трение в трансмиссии;

 N_{δ} — потери мощности на буксование;

 N_f — мощность, затрачиваемая на самопередвижение трактора;

 N_{i} — мощность, расходуемая на преодоление подъемов;

 N_{j} — мощность, затрачиваемая на преодоление сил инерции;

 $N_{_{\!K\!P}}$ — мощность на прицепном крюке;

 N_{B0M} — мощность, расходуемая на привод механизмов рабочих машин и орудий от BOM;

 N_{np} — мощность, расходуемая на механические потери при передаче ее от двигателя на BOM.

2.4. Силы, действующие на трактор.

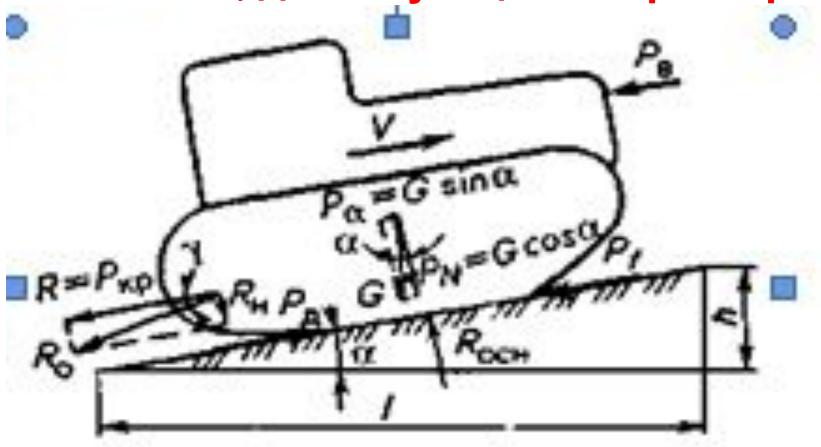


Рис. 2.3. Схема сил, действующих на трактор

Под действием ведущего вращающего момента M_{κ} , подводимого к ведущей звездочке, ведущая часть гусеницы (движителя), натягиваясь, воздействует на опорную поверхность (почву) с силой P . называемой касательной силой тяги.

силой
$$P_{_{\rm K}}$$
, называемой касательной силой тяги.
$$P_{_{\rm K}} = \frac{M_{_{\rm K}}}{r} = \frac{M\eta_{_{\rm TP}}i_{_{\rm TP}}}{r} = \frac{N_{_{\rm H}}\varepsilon_{_{\rm N}}\eta_{_{\rm TP}}i_{_{\rm TP}}}{0,150\,r\,n}$$

где r – радиус качения (радиус начальной окружности ведущей звездочки гусеничных тракторов),м;

 $i_{_{\mathrm{TP}}}$ -передаточное число трансмиссии трактора.

Для колесных тракторов с пневматическими шинами:

$$r = r_o + \beta_y + h_n$$

где r_0 -радиус посадочной окружности стального обода колеса,м; r_0 =0,483

 β_y -коэфициент усадки шины; β_y = 0,75 на стерне и 0,80 — на поле, подготовленном под посев.

 $h_{_{\rm II}}$ - высота поперечного профиля шины, $h_{_{\rm II}}$ =0,305—для тракторов МТЗ-80 и МТЗ-82 и 0,395 — для трактора Беларус 1221-1523.