ОБЛАСТЬ ОПРЕДЕЛЕНИЯ И МНОЖЕСТВО ЗНАЧЕНИЙ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ

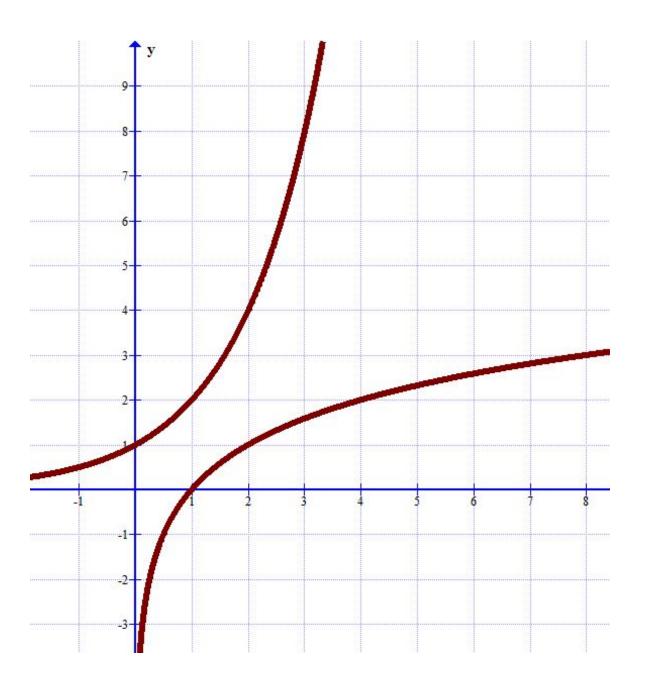
ПОВТОРЕНИЕ

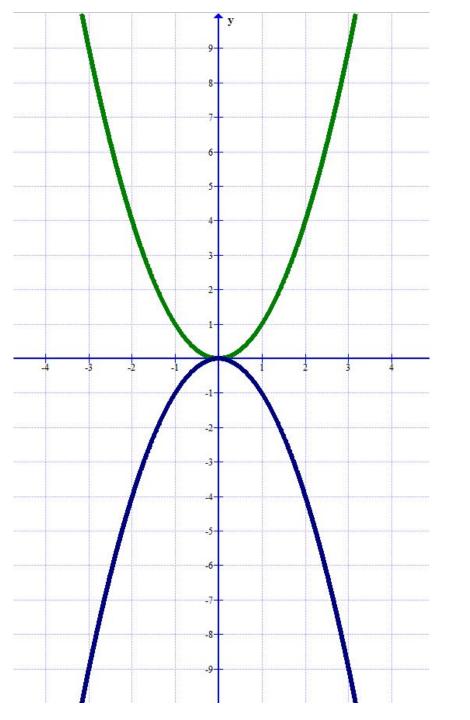
- Что такое функция?
- Что такое область определения функции?
 Чем является область определения
 функции геометрически?
- Что такое множество значений функции?
 Чем является множество значений
 функции геометрически?

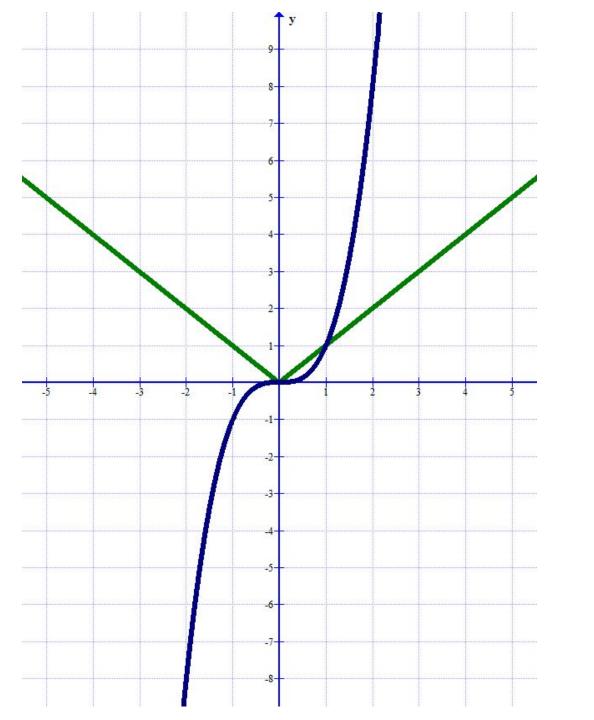
ПОНЯТИЕ ФУНКЦИИ

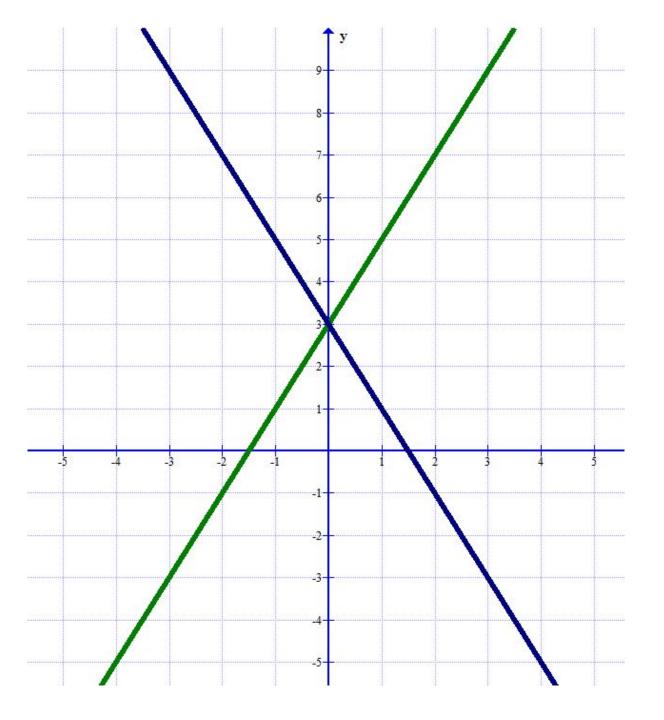
 Если каждому значению х из некоторого множества чисел поставлено в соответствие по определенному правилу число у, то говорят, что на этом множестве задана функция. При этом х называют независимой переменной или аргументом, а у - зависимой переменной или функцией. Зависимость переменной у от переменной х называют функциональной зависимостью. Записывают y=f(x).

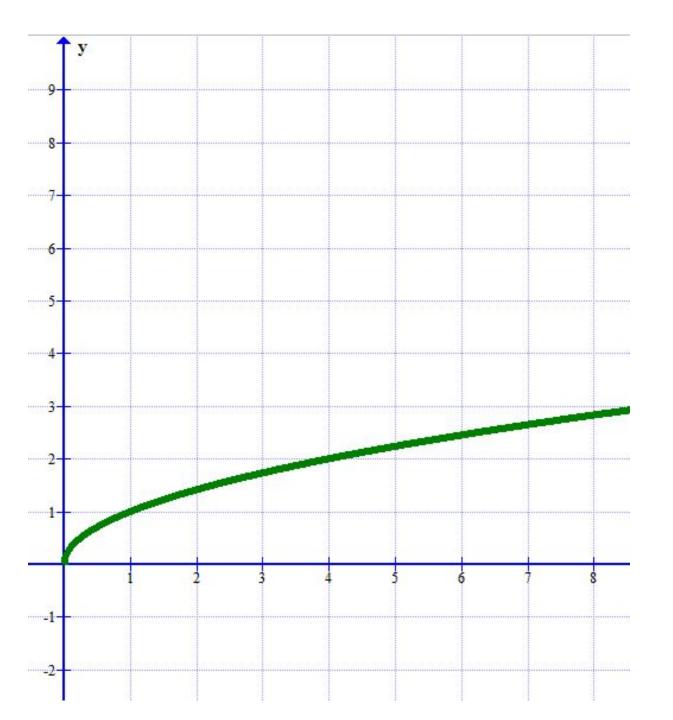
ОБЛАСТЬ ОПРЕДЕЛЕНИЯ ФУНКЦИИ


Областью определения функции
называют множество всех допустимых
значений переменной х. Геометрически это проекция графика функции на ось Ох.


МНОЖЕСТВО ЗНАЧЕНИЙ ФУНКЦИИ


 Множество значений функции множество всех значений, которые функция принимает на области определения. Геометрически - это проекция графика функции на ось Оу.





				↑1					
<u>i</u>			-						
			7						
			6			<u> </u>			
			5						
			4						
			3						
				1					
			2						
			1	_					
	33.0 - 3.0					-			
× 1								f	
5	-4 -3	-2	-1	1	2	3	4		
						-	X02025-		
			-1-						
			-2-						
			-2	/					
			-3	1					
				1					
			_3						
						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
			_3						
			_3			0			

КАК НАЙТИ ОБЛАСТЬ ОПРЕДЕЛЕНИЯ ФУНКЦИИ, ЗАДАННОЙ ФОРМУЛОЙ?

• Чтобы найти область определения функции y=f(x), заданной формулой, нужно установить, при каких значениях x выражение f(x) имеет смысл, т. е. выполнимы все действия в правой части формулы.

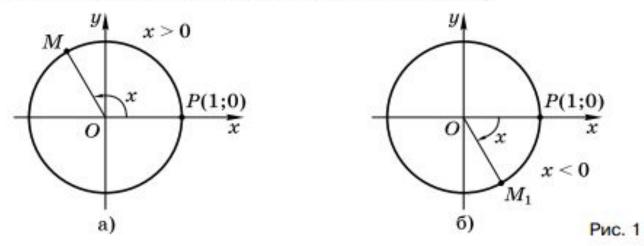
НАЙДИТЕ ОБЛАСТЬ ОПРЕДЕЛЕНИЯ ФУНКЦИИ:

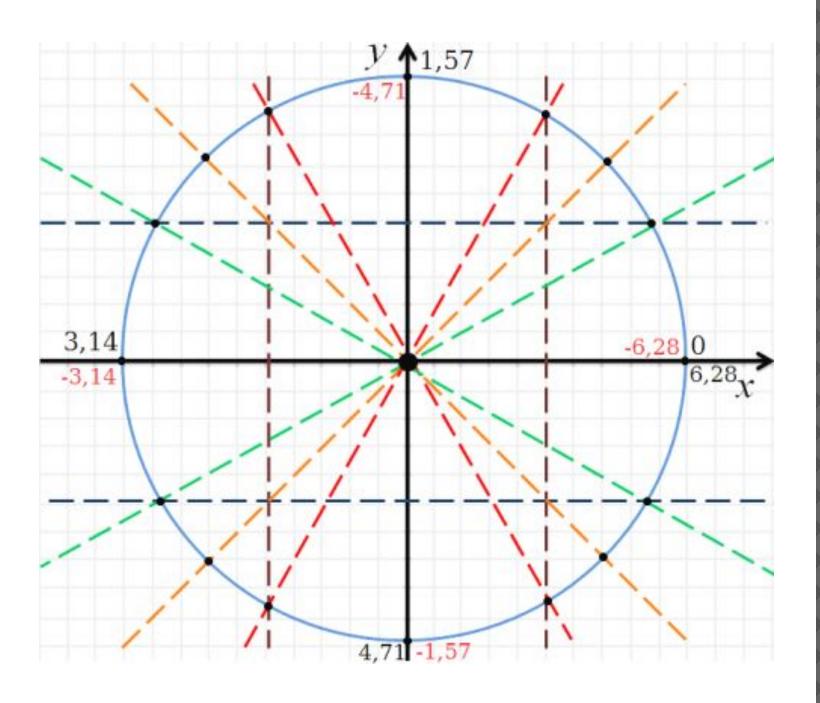
1)
$$y = \sqrt{3 - 2x}$$
; 2) $y = \sqrt[3]{3x + 1}$;

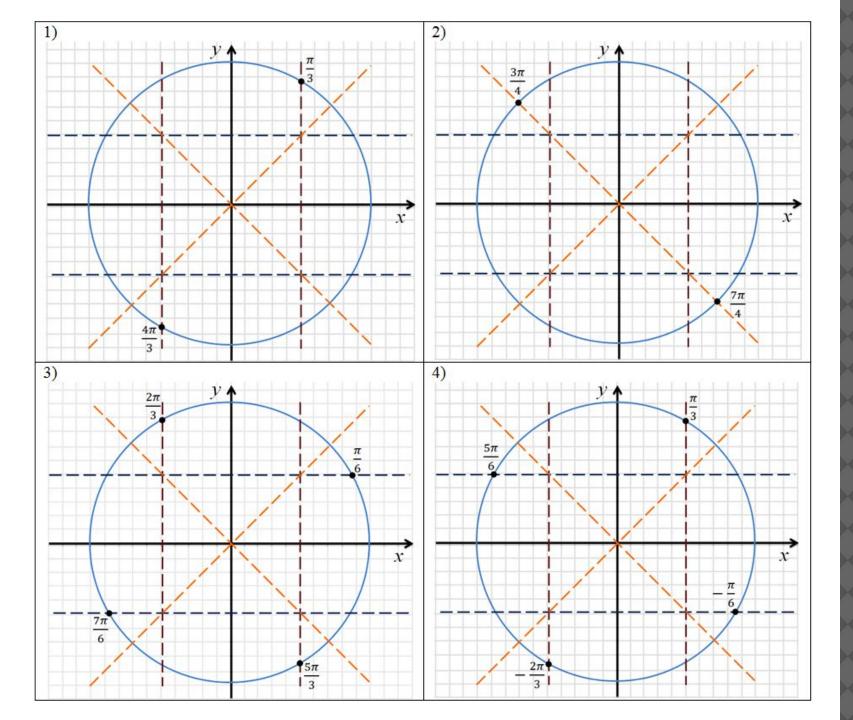
3)
$$y = \sqrt{x^2 - x - 2}$$
; 4) $y = \frac{5x}{\sqrt{x^2 + 6x + 9}}$;

5)
$$y = \frac{2x-1}{x^2-5x+6}$$
; 6) $y = \sqrt{x} + \sqrt{3-x}$;

7)
$$y = \sqrt{x-7} - \sqrt{x}$$
; 8) $y = \log_2(3x+1)$;


$$9) y = \log_{\mathcal{X}}(x - 5).$$


ПЛАКАТ 1. Поворот точки вокруг начала координат (рис. 1)


Точка M получена из точки P (1; 0) поворотом вокруг начала координат на угол x радиан, где x > 0.

Точка M_1 получена из точки P (1; 0) поворотом вокруг начала координат на угол x радиан, где x < 0.

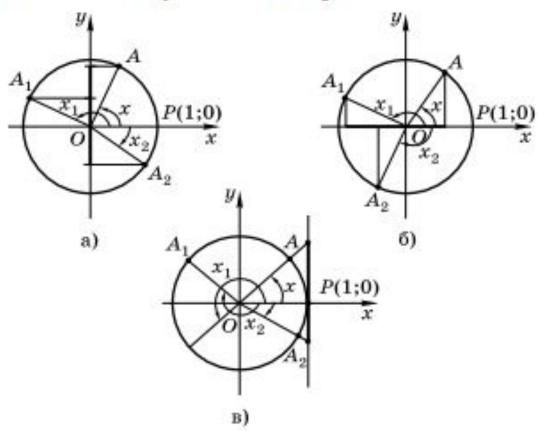
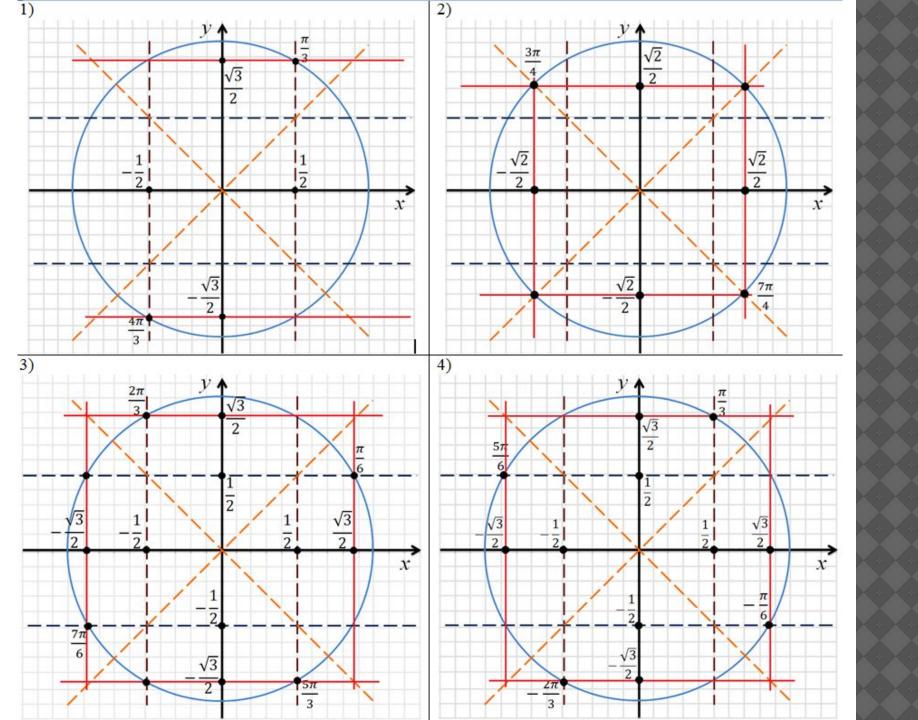
Если $x = x_0 + 2\pi n$, $n \in \mathbb{Z}$, то при повороте на угол x получается та же самая точка, что и при повороте на угол x_0 .

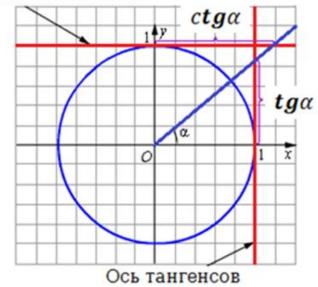
ПЛАКАТ 2. Определение синуса, косинуса и тангенса числа (рис. 2)

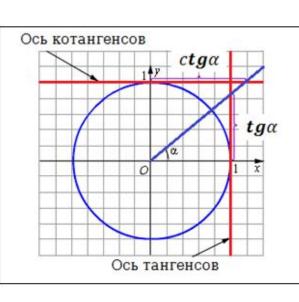
 $\sin x$ — ордината точки A, $\sin x_1$ — ордината точки A_1 , $\sin x_2$ — ордината точки A_2 .

 $\cos x$ — абсцисса точки A, $\cos x_1$ — абсцисса точки A_1 , $\cos x_2$ — абсцисса точки A_2 .

$$\frac{\sin x}{\cos x} = \operatorname{tg} x, \quad \frac{\sin x_1}{\cos x_1} = \operatorname{tg} x_1, \quad \frac{\sin x_2}{\cos x_2} = \operatorname{tg} x_2.$$


Рис. 2


СВОЙСТВА ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ

Функция	Область определения	Множество значений
y = sinx		
y = cosx		
y = tgx		
y = ctgx		

Ось котангенсов

СВОЙСТВА ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ

Функция	Область определения	Множество значений	
y = sinx	$x \in \mathbf{R}$	$y \in [-1; 1]$	
y = cosx	$x \in \mathbf{R}$	$y \in [-1; 1]$	
y = tgx	$x \neq \frac{\pi}{2} + \pi k, k \in \mathbf{Z}$	$y \in R$	
y = ctgx	$x \neq \pi k, k \in \mathbf{Z}$	$y \in R$	

НАХОЖДЕНИЕ МНОЖЕСТВА ЗНАЧЕНИЙ ФУНКЦИИ

I способ. Через уравнение с параметром

- 1. Рассмотреть функцию как уравнение с параметром.
- 2. Если необходимо, преобразовать левую часть уравнения, т. е. привести левую часть к выражению с одной тригонометрической функцией.
- 3. Выяснить, при каких значениях *а* уравнение имеет корни.
- 4. Полученное множество значений, *а* является множеством значений функции *у*.

$$\cos 2x - 2\sin^2 x = a$$

$$cos2x - (1 - cos2x) = a$$
$$cos2x - 1 + cos2x = a$$
$$2cos2x - 1 = a$$
$$cos2x = \frac{a+1}{2}$$

Для всех значений a, таких, что $a \in [-3; 1]$, это уравнение имеет корни.

Множество значений данной функции – отрезок [-3; 1].

II способ. Метод оценки

- 1. Если необходимо, привести правую часть формулы к выражению с одной тригонометрической функцией. 2. Найти множество значений внутренней основной тригонометрической функции. 3. Найти множество значений всей функции, последовательно оценивая каждую промежуточную функцию, получаемую операцией из исходной.
- 4. Записать ответ.

$$y = \sin^{2}x + 6\sin x + 10$$

$$y = (\sin^{2}x + 2 \cdot 3 \cdot \sin x + 3^{2}) + 1$$

$$y = (\sin x + 3)^{2} + 1$$

$$-1 \le sinx \le 1$$

$$-1+3 \le sinx + 3 \le 1+3$$

$$2 \le sinx + 3 \le 4$$

$$2^{2} \le (sinx + 3)^{2} \le 4^{2}$$

$$4 \le (sinx + 3)^{2} \le 16$$

$$4+1 \le (sinx + 3)^{2} + 1 \le 16+1$$

$$5 \le (sinx + 3)^{2} + 1 \le 17$$

$$y \in [5; 17]$$