
Chapter-1
Constructor and

Destructor
(Week 1 and 2)

Dr.S.Manimurugan

OUTLINE…
• PREPROCESSOR WRAPPERS

• CONSTRUCTORS AND DESTRUCTORS IN C++

• TYPES OF CONSTRUCTORS IN C++
o Default Constructor

o Parameterized Constructor

o Copy Constructor

• DESTRUCTORS IN C++

• C++ CONSTRUCTORS OVERLOADING

• EXAMPLES

PREPROCESSOR WRAPPERS
• Prevents code from being included more than once

• #ifndef – “if not defined”

• Skip this code if it has been included already

• #define

• Define a name so this code will not be included again

• #endif

• If the header has been included previously
• Name is defined already and the header file is not included again

• Prevents multiple-definition errors

• Example #ifndef TIME_H

#define TIME_H

… // code

#endif Dr.S.Manimurugan

Dr.S.Manimurugan

Dr.S.Manimurugan

Simple Class and objects

Dr.S.Manimurugan

Dr.S.Manimurugan

Constructors and Destructors in C++

o Constructors are special class functions which performs

initialization of every object.

o The Compiler calls the Constructor whenever an object is

created.

o Constructors initialize values to object members after

storage is allocated to the object.

o Whereas, Destructor on the other hand is used to destroy

the class object.

Dr.S.Manimurugan

o While defining a constructor you must remember that

the name of constructor will be same as the name of the

class, and constructors will never have a return type.

o Constructors can be defined either inside the class definition

or outside class definition using class name and scope

resolution :: operator.

Dr.S.Manimurugan

Types of Constructors in C++

Constructors are of three types:

o Default Constructor

o Parameterized Constructor

o Copy Constructor

Dr.S.Manimurugan

Default Constructors

o Default constructor is the constructor

which doesn't take any argument. It

has no parameter.

o In this case, as soon as the object is

created the constructor is called

which initializes its data members.

o A default constructor is so important

for initialization of object members,

that even if we do not define a

constructor explicitly, the compiler

will provide a default constructor

implicitly.
Dr.S.Manimurugan

Parameterized Constructors

o These are the constructors

with parameter.

o Using this Constructor you can

provide different values to data

members of different objects,

by passing the appropriate

values as argument.

o By using parameterized

constructor in above case, we

have initialized 3 objects with

user defined values. We can

have any number of

parameters in a constructor.

Dr.S.Manimurugan

COPY CONSTRUCTOR

o A copy constructor is a member function which initializes

an object using another object of the same class.

o Copy Constructor is a type of constructor which is used

to create a copy of an already existing object of a class

type. It is usually of the form X (X&), where X is the class

name. The compiler provides a default Copy Constructor

to all the classes.
Syntax of Copy
Constructor

As it is used to create an object, hence it is called a constructor.

And, it creates a new object, which is exact copy of the existing

copy, hence it is called copy constructor.Dr.S.Manimurugan

#include<iostream>
using namespace std;
class SC
{
 private:
 int x, y; //data members
 public:

 SC(int x1, int y1)
 {
 x = x1;
 y = y1;
 }

 /* Copy constructor */
 SC(const SC &obj2)

 {
 x = obj2.x;
 y = obj2.y;
 }

 void display()
 {
 cout<<x<<" "<<y<<endl;
 }

};

/* main function */
int main()
{
 SC obj1(10, 15); // Normal constructor
 SC obj2 = obj1; // Copy constructor
 cout<<"Normal constructor : ";
 obj1.display();
 cout<<"Copy constructor : ";
 obj2.display();
 return 0;
}

Dr.S.Manimurugan

DESTRUCTORS IN C++

Destructor is a special member function that is executed

automatically when an object is destroyed that has been created

by the constructor. C++ destructors are used to de-allocate the

memory that has been allocated for the object by the constructor.

Its syntax is same as constructor except the fact that it is

preceded by the tilde sign.

 ~class_name() { }; //syntax of destructor

CONSTRUCTORS AND DESTRUCTORS IN C++

o Constructors are special class functions which performs

initialization of every object.

o The Compiler calls the Constructor whenever an object is

created.

o Constructors initialize values to object members after

storage is allocated to the object.

o Whereas, Destructor on the other hand is used to destroy

the class object.

Dr.S.Manimurugan

STRUCTURE OF C++ DESTRUCTORS

/*...syntax of destructor....*/
class class_name

{
public:
class_name(); //constructor.
~class_name(); //destructor.

}
Unlike constructor a destructor neither takes any arguments nor

does it returns value. And destructor can’t be overloaded.

#include <iostream>
using namespace std;
class ABC
{
 public:
 ABC () //constructor defined

 {
 cout << "Hey look I am in constructor" << endl;
 }

 ~ABC() //destructor defined
 {
 cout << "Hey look I am in destructor" << endl;
 }

};
int main()
{
 ABC cc1; //constructor is called
 cout << "function main is terminating...." << endl;
 return 0;
} //end of program

C++ CONSTRUCTORS OVERLOADING

o Every constructor has same name as class name but they

differ in terms of either number of arguments or the

datatypes of the arguments or the both.

o As there is more than one constructor in class it is also

called multiple constructor.

/*.....A program to highlight the concept of constructor
overloading.......... */
#include <iostream>
using namespace std;
class ABC
{
 private:
 int x,y;
 public:
 ABC () //constructor 1 with no arguments
 {
 x = y = 0;
 }
 ABC(int a) //constructor 2 with one argument
 {
 x = y = a;
 }

 ABC(int a,int b) //constructor 3 with two argument
 {
 x = a;
 y = b;
 }
 void display()
 {
 cout << "x = " << x << " and " << "y = " << y << endl;
 }
};
int main()
{
 ABC cc1; //constructor 1
 ABC cc2(10); //constructor 2
 ABC cc3(10,20); //constructor 3
 cc1.display();
 cc2.display(); cc3.display(); return 0;
 } //end of program

Dr.S.Manimurugan

1. What is called a class constructor? What is the purpose of

class constructor?

A class can contain special functions: constructors

and destructors. A class constructor is a special method

(function) of a class. The constructor is called when a class object

is created. Typically, the constructor is used for:

• allocating memory for a class object;

• initial initialization of the internal data of the class.

The constructor is intended to form an instance of a class object.

The name of the class constructor is the same as the class name.

2. At what point does the program call the class constructor?

The constructor is called when a class object is created. The class

constructor is called by the compiler.

Dr.S.Manimurugan

3. Can the constructor have parameters? Examples of

constructors with different number of parameters

The constructor can have any number of parameters. Also, the

constructor can be without parameters (the default constructor).

#include<iostream>
using namespace std;
class CMyDate
{
 int day;
 int month;
 int year;
 public:
 // class constructors
 CMyDate(); // constructor without parameters
 CMyDate(int d, int m, int y); // constructor with 3 parameters

Dr.S.Manimurugan

 // class methods
 void SetDate(int d, int m, int y); // set a new date
 int GetDay(void); // returns day
 int GetMonth(void); // returns month
 int GetYear(void); // returns year
};
// implementation of class constructors and methods
// constructor without parameters (default constructor)
CMyDate::CMyDate()
{
 // set the date 01.01.2001
 day = 1;
 month = 1;
 year = 2001;
}
// constructor with 3 parameters
CMyDate::CMyDate(int d, int m, int y)
{
 day = d;
 month = m;
 year = y;
}

Dr.S.Manimurugan

// set a new date
void CMyDate::SetDate(int d, int
m, int y)
{
 day = d;
 month = m;
 year = y;
}
// return day
int CMyDate::GetDay(void)
{
 return day;
}
// return month
int CMyDate::GetMonth(void)
{
 return month;
}

Dr.S.Manimurugan

// retutn year
int CMyDate::GetYear(void)
{
 return year;
}

int main()
{
CMyDate obj;
CMyDate obj1(15,12,2045);
obj.SetDate(23, 12,2012); // set a new date

 cout<<obj.GetDay()<<"\t"<<obj.GetMonth()<<"\t"<<obj.GetYear()<<"\n";
 cout<<obj1.GetDay()<<"\t"<<obj1.GetMonth()<<"\t"<<obj1.GetYear();

}

Dr.S.Manimurugan

4. Is it necessary to declare a constructor in a class?

Not. When you create a class object that does not contain any

constructors, the implicit default constructor will be called. This

constructor allocates memory for the class object. However, in the

class, you can declare your own default constructor. This

constructor is called: an explicitly defined default constructor.

5. What is the default constructor? Examples

The default constructor is the constructor of a class that is

declared without parameters. If the class does not explicitly

contain a specific constructor, then when the object is created, the

default constructor is automatically called. When declaring a class

object, the class constructor simply allocates memory for it.

Dr.S.Manimurugan

// A class that defines a point on the
coordinate plane
class CMyPoint
{
 int x;
 int y;

 public:
 // class methods
 void SetPoint(int nx, int ny)
 {
 x = nx;
 y = ny;
 }

 int GetX(void) { return x; }
 int GetY(void) { return y; }
};

CMyPoint MP; // the default constructor is automatically
called

MP.SetXY(4, -10); // call of class methods
int t;
t = MP.GetY(); // t = -10

Dr.S.Manimurugan

// A class that defines a point on the
coordinate plane
class CMyPoint
{
 int x;
 int y;

 public:
 // class methods
 void SetPoint(int nx, int ny)
 {
 x = nx;
 y = ny;
 }

 int GetX(void) { return x; }
 int GetY(void) { return y; }
};

CMyPoint MP; // the default constructor is automatically
called

MP.SetXY(4, -10); // call of class methods
int t;
t = MP.GetY(); // t = -10

