Определение количества этилендиамина в соединении $[Gd(en)_x][Fe(CN)_6]$

Цель и задачи

• Определить количество этилендиамина, содержащееся в образцах соединения [Gd(en)_x][Fe(CN)₆]

- •Отработка методики индикаторного кислотноосновного титрования
- •Подготовка рабочих растворов
- •Титрование образов $[Gd(en)_x][Fe(CN)_6]$ и обсчет плученных данных

Комплексные соли

 Комплексные соли – продукты сочетания солей металлов с почти недиссоциированным на составные части органическими и неорганическими молекулами, содержащие гетеро-атомы с донорной функцией. Комплексные соли при диссоциации образуют сложные комплексные ионы, которые довольно устойчивы в водных растворах. Ион-комплексообразователь и лиганды составляют внутреннюю сферу, комплексный ион, который может являться как анионом, так и катионом.

Примеры: $Na_2[Zn(OH)_4]$; $K_4[Fe(CN)_6]$; [Ag(NH₃)₂]Cl; [Ag(H₂O)₆]Cl₃

• Двойные комплексные соли – комплексные соли содержащие в себе и комплексный катион, и комплексный анион.

Аммиак и амины.

- Неподеленная электронная пара аммиака позволяет во многих реакциях выступать в качестве основания или комплексообразователя.
- Амины органические соединения, которые можно рассматривать как производные аммиака, в молекуле которого один, два или три атома водорода замещены на углеводородные радикалы, которые могут быть разнотипные и одинаковые.
- Так как амины являются производными аммиака, то они проявляют подобные ему основные свойства, за счет неподеленной электронной пары азота.

Этилендиамин.

- •Жидкость без цвета с запахом аммиака, дымит на воздухе, хорошо растворяется в воде с разогреванием раствора.
- Этилендиамин является сильным основанием, так как является алифатическим амином.
- Содержит две аминогруппы, является бидентантным лигандом.

Кислот-основное титрование.

- Основной является реакция нейтрализации между кислотой и основанием с образованием воды.
- Титрование раствором щелочи называется алкалиметрией.
 Титрование раствором кислоты ацидиметрией.
- Алкалиметрия используется для количественного определения кислот, ацидиметрия щелочей.
- Индикаторное титрование метод, при котором точка эквивалентности определяется количеством титранта. Точка эквивалентности определяется по смене окраски индикатора.

Экспериментальная часть.

Титрование раствора NaOH 0,1 М раствором HCl с бромтимоловым синим:

V _{HCI} (мл)	Cn(NaOH) (экв/л)	Средняя Cn(NaOH) (экв/л)	Δ Cn(NaOH) (экв/л)	Cn(NaOH) (экв/л)
8,7	0,0435		0,0001	
8,6	0,043		0,0004	0,0434±0,002
8,7	0,0435	0,0434	0,0001	
8,7	0,0435	,	0,0001	

Экспериментальная часть.

Определение концентрации раствора H_2SO_4 , стандартизированным раствором NaOH.

V _{NaOH} (мл)	Cn(H ₂ SO ₄) (экв/л)	Средняя Cn(H ₂ SO ₄) (экв/л)	Δ Cn (H ₂ SO ₄₎ (экв/л)	Cn(H ₂ SO ₄) (экв/л)
13,5	0,02903	0,02898	0,00005	0,0289 ± 0,0001
13,4	0,02881		0,00017	
13,5	0,02903			
			0,00005	
13,5	0,02903		0,00005	

Экспериментальная часть.

• Титрование образцов серной кислотой

На массу образца $[Gd(en)_x][Fe(CN)_6]$ массой 87,5 мг для оттитровки потребовалось 20 мл раствора серной кислоты. На массу образца 78,5 мг потребовалось 19 мл серной кислоты.

Сделайте здесь таблицу (масса образца-объем кислоты-количество этилендиамина)

Результат.

$$\frac{0,0875 \Gamma}{609,1 \ \Gamma/\text{моль}} * 4 = 0,00057 \ \text{моль}$$

Тем самым на 0,0875 г образца приходится 0,00057 моль en

$$\frac{0,0785 \Gamma}{609,1 \ \Gamma/\text{моль}} * 4 = 0,00052 \ \text{моль}$$

Тем самым на 0,0785 г образца приходится 0,00052 моль en

Вы не то посчитали, рассчитайте количество этилендиамина, приходящееся на единицу массы образца, в формате 0,001 моль этилендиамина на 1 г образца (здесь числа сулчайные).

Основные результаты и выводы.

• Мы смогли определить примерное количество этилендиамина в соединении [Gd(en)_x][Fe(CN)₆] при помощи кислот-основного титрования. Но так как в растворе оставались примеси, а отфильтровать и взвесить их не получилось – это неточные значения.