Амины

Амины –это органические соединения в молекуле которых один или несколько атомов водорода замещены на аминогруппу – NH₂

Их также можно рассматривать как производные аммиака, в молекуле которого один, два или три атома водорода замещены на углеводородные радикалы.

І.Первичные амины

1.1. Алифатического ряда

ациклические

алициклические

 NH_2

CH₃—NH₂

метиламин

1.2. Ароматического

 $C_6H_5-NH_2$ фениламин (анилин) циклогексиламин

1.3. Гетероциклического

- II. Вторичные амины
- 2.1. Алифатического ряда 2.2. Ароматического ряда

Продолжение аминов ароматического ряда

4-метил- 2'-хлордифениламин

2.3. Смешанные

СН₃— NН—С₆Н₅ метилфениламин N-метиланилин

С₂Н₅— NН—С₆Н₅ этилфениламин N-этиланилин

III. Третичные амины

3.1. Алифатического ряда

$$C_2H_5$$
 H_3C — N — C_2H_5
метилдиэтиламин

3.2. Ароматического ряда

N-n-толилдифениламин

Способы получения аминов

1. Алкилирование аммиака и аминов (реакция А. Гофмана-1850г)

$$\ddot{N}$$
 H₃ + CH₃ → CI → [CH₃ \ddot{N} H₃] CI
метилхлорид хлорид метиламмония
[CH₃ \ddot{N} H₃] CI + NH₃ → CH₃NH₂ + NH₄CI

2.Восстановление азотсодержащих соединений: а) восстановление нитропроизводных (реакция Зинина Н.Н.-1842г);

$$NO_2^+$$
 6[H], Fe, Sn, HCl NH_2 тробензол анилин

Химические свойства

• 1. Основные свойства

$$R - NH_2 + H_2O \longrightarrow [R - NH_3] OH^-$$
• гидроксид алкиламмония

$$R-NH_2 + HCI \longrightarrow [R-NH_3]C\Gamma$$

• хлорид алкиламмония

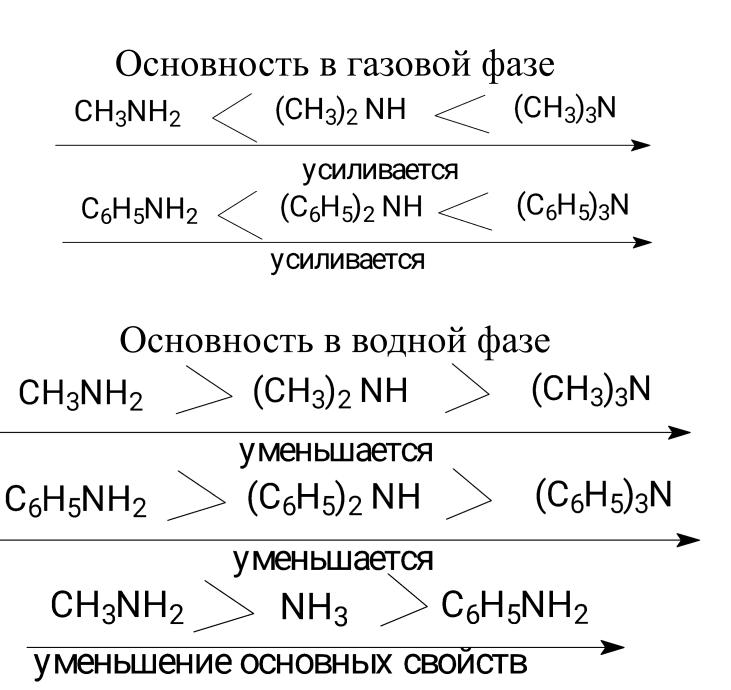
Реакции с HNO₂ используется для отличия аминов

• С первичными аминами алифатического ряда реакция идет с выделением азота, а с аминами ароматического ряда образуются соли диазония

$$H_3C-NH_2 + HNO_2 \rightarrow CH_3OH + N_2 \uparrow + H_2O$$

$$C_6H_5NH_2 + HNO_2 \xrightarrow{+HCI} [C_6H_5N^{\dagger} \equiv N] C\overline{I}$$

хлоридфенилдиазония


со вторичными аминами любого ряда образуются нитрозосоединения — жидкости маслянистого типа

$$H_3C$$
 $N \to H_1 + H_0 \to N = 0$
 H_3C
 $N \to H_3C$
 $N \to N = 0$

N-нитрозодиметиламин с третичными аминами алифатического ряда при

комнатной температуре реакция не идет, а при нагревании

идет разложение молекулы
$$H_3C$$
 H_3C $N + HNO_2$ H_3C $N + HNO_2$ H_3C $N + HNO_2$ $N + HNO_2$

2. Кислотные свойства

$$(CH_3)_2$$
— CH $NH + C_4H_9Li$ $(CH_3)_2$ — CH $N-Li$ $(CH_3)_2$ — CH $(CH_3)_2$ — CH диизопропиламин диизопропиламид лития

3. Нуклеофильные свойства

• 3.1. Алкилирование

$$R = NH_2 + CH_3 \longrightarrow CI = R - NHCH_3$$

• 3.2. Ацилирование

$$NH_2+CI-C-CH_3$$
 — NH—C—CH3 N—фенилацетами (ацетанили д, антифебрин)

3.3. Взаимодействие с

$$R-C \stackrel{O}{\leftarrow}_{H}$$
 , $R-C-R'$

$$NH_2 + O = C - C_6H_5$$
 — N=CH-C₆H₅ азометиновый краситель