Кодирование графической информации

В памяти компьютера информация об изображении состоит из двоичных кодов каждого пикселя.

Код пикселя — это информация о цвете пикселя

Для получения черно-белого изображения пиксель может принимать только два состояния: светится — не светится (белый черный). Тогда сколько нужно памяти для кодирования этого пикселя?

Для кодирования этого пикселя достаточно одного бита памяти: 1 — белый

0 – черный

1 бит — 2 цвета

Сколько нужно памяти для кодирования 4цветного изображения?

Для кодирования 4цветного изображения требуется 2 бита, они могут принимать 4 различных состояния

Например:

- 00 черный
- 01 красный
- 10 зеленый
 - 11 белый

1 бит — 2 цвета 2 бита — 4 цвета

Красный	Зеленый	Синий	Цвет
0	0	0	Черный
0	0	1	Синий
0	1	0	Зеленый
0	1	1	Голубой
1	0	0	Красный
1	0	1	Розовый
1	1	0	Коричневый
1	1	1	Белый

1 бит — 2 цвета 2 бита — 4 цвета 3 бита — 8 цветов

Шестнадцатицветная палитра получается использовании четырехразрядной кодировки пикселя: к трем битам базовых цветов добавляется один интенсивности. Этот бит управляет яркостью всех трех цветов одновременно (интенсивностью электронных трех пучков)

И	К	3	C	Цвет	И	K	3	<i>C</i>	Цвет
0	0	0	0	Черный	1	0	0	0	Темно-серый
0	0	0	1	Синий	1	0	0	1	Ярко-синий
0	0	1	0	Зеленый	1	0	1	0	Ярко-зеленый
0	0	1	1	Голубой	1	0	1	1	Ярко-голубой
0	1	0	0	Красный	1	1	0	0	Ярко-красный
0	1	0	1	Розовый	1	1	0	1	Ярко-розовый
0	1	1	0	Коричневый	1	1	1	0	Ярко-желтый
0	1	1	1	Белый	1	1	1	1	Ярко-белый

1 бит — 2 цвета 2 бита — 4 цвета 3 бита — 8 цветов 4 бита — 16 цветов

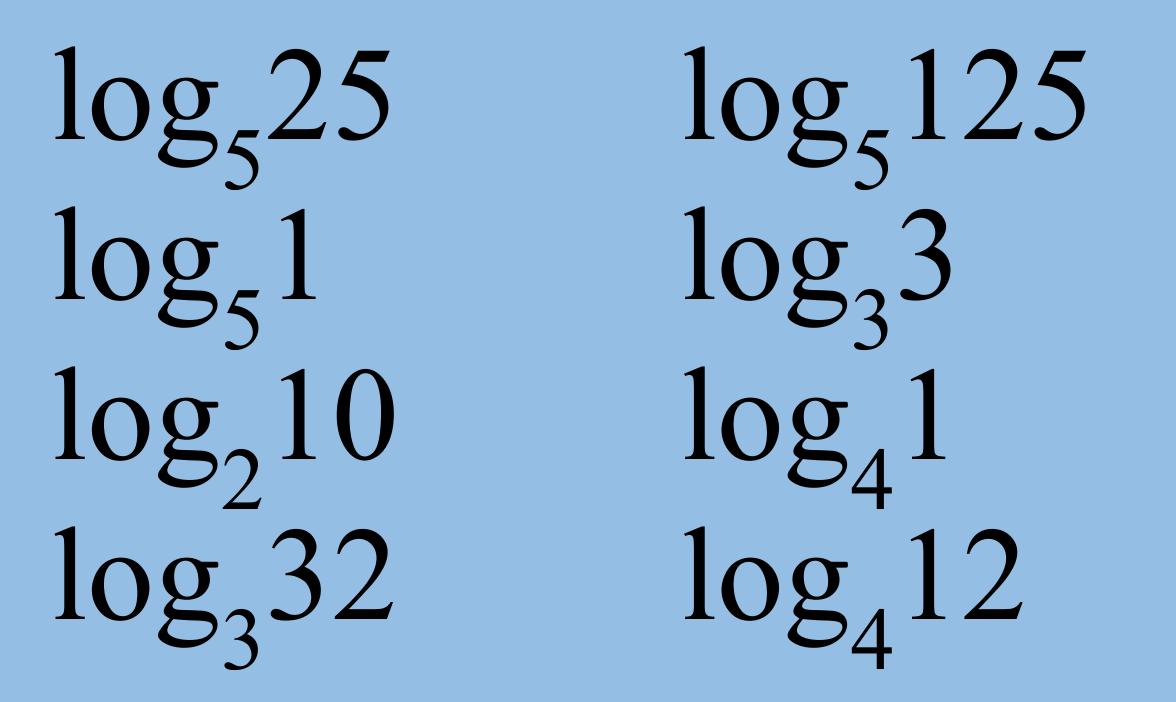
2^b=K

К – количество цветов b — кол-во бит для их кодировки

2^b=K

$\log_{2} 4 = 2$ $log_4 16$ log₃9 $\log_2 8 = 3$ log, 16 log₃27 log₂32 log, 256

$\log_{2} 4 = 2$ $\log_{4} 16 = 2$ $\log_3 9 = 2$ $\log_{2} 8 = 3$ $\log_3 27 = 3$ $\log_{2} 16 = 4$ $\log_{2} 32 = 5$ $\log_{2}256=8$


$5^0 = 1$ $2^0 = 1$ $3^0 = 1$

10g_a1=0

$log_a 1=0$

$$log_5 1=0$$
 $log_6 1=0$
 $log_2 1=0$ $log_{208} 1=0$

$\log_{5} 125 = 3$ $\log_5 25 = 2$ $\log_3 3=1$ $\log_5 1 = 0$ log₂10 $\log_4 1 = 0$ log₃32 $log_4 12$

$a^{X}=b$

$$x=log_ab$$

Размер необходимой видеопамяти определяется размером графической сетки дисплея и количеством цветом. Минимальный размер видеопамяти должен быть таким, чтобы в него помещался один кадр (страница) изображения.

Сколько надо памяти, чтобы закодировать пиксель черно-белого изображения?

800*600*1==480 000 бит= $=60~000~байт\approx58,6$ Кбайт

I=M*N*b*k

I – размер видеопамяти, необходимый для хранения изображения

M*N – размер графической сетки (разрешение) b - кол-во бит для кодировки пикселя b=log₂K k – количество страниц (кадров) изображения

I=M*N*b*k

ИЛИ

Какой объем видеопамяти в Кбайтах нужен для хранения изображения размером 640x200 пикселей 16-цветную использующего палитру?

b=log,K $b = \log_2 16 = 4$ I=640*200*4*1==512000бит=64000байт =62,5 Кбайт

Какой объем видеопамяти в Кбайтах нужен для хранения изображения размером 640x480 пикселей 8-цветную использующего палитру?

$$b=log_2K$$

 $b=log_28=3$
 $I=640*480*3*1=$
 $=9216006$ ит=115200байт=
 $=112,5$ Кбайт

Дисплей работает с 8-ти цветной палитрой в режиме 640х400 пикселей. Изображение занимает 2 страницы видеопамяти. Какой объем видеопамяти в Кбайтах нужен для хранения этого изображения?

b=log₂K $b = log_2 8 = 3$ I=640*400*3*2= =1536000бит=192000байт =187,5 Кбайт

Дисплей работает с 16-ти цветной палитрой в режиме 640х200 пикселей. Изображение занимает 3 страницы видеопамяти. Какой объем видеопамяти в Кбайтах нужен для хранения этого изображения?

b=log₂K $b = log_2 16 = 4$ I=640*200*4*3= =1536000бит=192000байт =187,5 Кбайт

Дисплей работает с 16-ти цветной палитрой в режиме 640х400 пикселей. Для кодирования изображения требуется 250 Кбайт. Сколько страниц видеопамяти оно занимает?

I=M*N*log,K*k 250 Кбайт= $640*400*log_216*k$ 250 Кбайт = 2048000 бит 2048000=640*400*4*k k=2 Ответ: 2 страницы

Дисплей работает с 32-ти цветной палитрой в режиме 800х640 пикселей. Для кодирования изображения требуется 937,5 Кбайт. Сколько страниц видеопамяти оно занимает?

I=M*N*log₂K*k 937,5 Кбайт=800*640*log,32*k 937,5 Кбайт = 7680000 бит 7 680 000 =640*400*4*k k=3 Ответ: 3 страницы

Сколько цветов МОЖНО максимально использовать для изображения хранения размером 640х200 пикселей, если объем видеопамяти - 90 Кбайт?

I=M*N*log₂K*k 90 Кбайт=640*200*log₂K*1 90 Кбайт = 737 280 бит $737\ 280 = 640*200*log_K*1$ $\log_{2}K = 5,76$ $K=\bar{2}^5=32$ Ответ: 32 цвета

Сколько цветов МОЖНО максимально использовать для изображения хранения размером 500х300 пикселей, если объем видеопамяти - 50 Кбайт?

I=M*N*log₂K*k 50 Кбайт=500*300*log,K*1 50 Кбайт = 409 600 бит $409\ 600 = 500*300*log_K*1$ $\log_{2} K = 2,73$ Ответ: 4 цвета K=4

Видеопамять объем, имеет может храниться котором изображение размером цветное 640x400. Какого размера изображение можно хранить в том же объеме памяти, если оно будет использовать 2-х цветную палитру?

I=M*N*log₂K*k I=640*400*log₂4*1 I = 512 000 бит $512\ 000 = M*N*log_2*1$ M*N = 512 000M*N=800*640

Видеопамять объем, имеет может храниться котором изображение цветное размером 800x640. Какого размера изображение можно хранить в том же объеме памяти, если оно будет использовать 4-х цветную палитру?

$I=M*N*log_2K*k$ $I = 800*640*log_{2}8*1$ I = 1 536 000 бит $1.536.000 = M*N*log_34*1$ M*N = 768 000M*N=960*800

преобразования процессе графического растрового файла количество цветов уменьшилось с 256 до 4. Во СКОЛЬКО уменьшился pa3 размер файла?

$$I_{6}=M*N* \log_{2} K_{6} *k$$

$$I_{c}=M*N* \log_{2} K_{c} *k$$

$$I_{6}=M*N* \log_{2} 256 *k$$

$$I_{c}=M*N* \log_{2} 4 *k$$

$$\frac{I_{6}}{I_{c}}=\frac{M*N* \log_{2} 256 *k}{M*N* \log_{2} 4 *k}=\frac{M*N* \log_{2} 4 *k}{M*N* \log_{2} 4 *k}$$

$$= \frac{\log_2 256}{\log_2 4} = \frac{8}{2} = 4$$

Ответ: в 4 раза

преобразования процессе графического растрового файла количество цветов уменьшилось с 4096 до 16. Во СКОЛЬКО уменьшился pa3 размер файла?

$$I_{6}=M*N* \log_{2} K_{6} *k$$

$$I_{c}=M*N* \log_{2} K_{c} *k$$

$$I_{6}=M*N* \log_{2}4096 *k$$

$$I_{c}=M*N* \log_{2}16 *k$$

$$\frac{I_{6}}{I_{c}}=\frac{M*N* \log_{2}4096 *k}{M*N* \log_{2}16 *k}=\frac{M*N* \log_{2}16 *k}{M*N* \log_{2}16 *k}$$

$$= \frac{\log_2 4096}{\log_2 16} = \frac{12}{4} = 3$$

Ответ: в 3 раза

Для кодирования красного цвета служит код 01. Сколько цветов содержит палитра?

Для кодирования красного цвета служит код 100. Сколько цветов содержит палитра?

Голубой цвет на одном компьютере кодируется кодом 0011, а на другом 011. Разрешающая способность дисплеев обоих компьютеров составляет 640х200 пикселей. Каков объем страницы видеопамяти на этих компьютерах?

$I_1 = 640*200*4*1$ $I_2 = 640*200*3*1$ $I_1 = 62,5$ Кбайта I₂=46,875 Кбайта

Окно текстового редактора содержит 40 строк по 80 символов в строке. Окно графического редактора, работающего в двухцветном режиме – 80х60 пикселей. Сравнить объемы памяти, необходимые для хранения текста, занимающего все окно текстового редактора, и для кодирования картинки, занимающей все рабочее поле графического редактора

I = 40*80 = 3200 байт $I_{K} = 80*60*log_{2}2*1=$ =4800 бит=600 байт

M/3 **M**02

##