
McGraw-Hill | 1Advanced Computer Architecture. Smruti R. Sarangi

Chapter 5:
Alternative Approaches to

Issue and Commit

McGraw-Hill |

Background Required to Understand this Chapter

2Advanced Computer Architecture. Smruti R. Sarangi

OOO Pipelines

Wakup/select Mechanism

Instruction commit
Chapter 4

McGraw-Hill |

Contents

3Advanced Computer Architecture. Smruti R. Sarangi

1. Load Speculation

2. Replay Mechanisms

3.

4.

5.

AGENDA ITEM 06
Green marketing is a practice whereby companies seek to go above and beyond.

Simpler Version of an OOO Processor

Compiler based Techniques

EPIC based Techniques: Intel Itanium

McGraw-Hill |

Aggressive Speculation

Branch prediction is one form
of speculation
• If we detect that a branch has been

 mispredicted
• Solution: flush the pipeline

This is not the only form of speculation
• Another very common type: load latency speculation or value

speculation
• Assume that a load will hit in the cache
• Speculatively wakeup instructions
• Later on if this is not the case: DO SOMETHING

4Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

Types of Aggressive Speculation

Address Speculation

Load-Store Dependence Speculation

Latency Speculation

Value Prediction

Advanced Computer Architecture. Smruti R. Sarangi 5

McGraw-Hill |

Address Speculation: Predict the memory address of a
load or store

Predict last address scheme

• Use a simple predictor

Advanced Computer Architecture. Smruti R. Sarangi 6

P
C n LSB

bits

Load
address

2n entries

McGraw-Hill |

Stride based Address Pattern

Advanced Computer Architecture. Smruti R. Sarangi 7

McGraw-Hill |

Predicting the Stride

• Last address (A): The memory address computed the last
time the instruction with this PC was executed.

• A stride-based access pattern is followed if:
current address – last address = S

• Then we set the pattern bit, P

• Alternatively, if P is set, we predict the next address to be
• A + S

Advanced Computer Architecture. Smruti R. Sarangi 8

Last address (A) Stride
(S)

Pattern
(P)

McGraw-Hill |

Load-Store Dependence Speculation

Advanced Computer Architecture. Smruti R. Sarangi 9

Predict a collision (same memory
address) between a load and a

store

If there are no collisions, send the
load directly to the cache.

Forward values across unresolved
stores.

McGraw-Hill |

Collision History Table

• Loads show consistent behavior
• They are either colliding or non-colliding

Advanced Computer Architecture. Smruti R. Sarangi 10

n-bit PC colliding or non-colliding

Collision History Table (CHT)

McGraw-Hill |

Using the CHT

• When we compute the address of a load
• We access the CHT

• If it is predicted to be colliding
• Wait for all prior stores to be resolved

• Else
• Send the load to the d-cache

• Once the address is resolved
• Update the CHT, recover the state (if necessary)

Advanced Computer Architecture. Smruti R. Sarangi 11

We can augment it with the store🡪load distance (D). A load waits till there
are less than D entries before it in the LSQ.

McGraw-Hill |

Store Sets

Advanced Computer Architecture. Smruti R. Sarangi 12

Ld/St
PC n

LSBbits

2n entries

store set id

SSIT LFST

Last fetched store
in this store set
(instruction number)

Explicitly remember load-store dependences

PC 🡪 Store set
identifier

Last fetched store
in the store set

McGraw-Hill |

Basic Idea

• For every load, we have an associated store set
• Stores that have forwarded values to it in the past

• A store may be a part of a single store set

Advanced Computer Architecture. Smruti R. Sarangi 13

Load

1. Read the store set id
2. Get the instruction number of the

latest store (S) from the LFST
3. The load waits for store S to get

resolved and then receives the
forwarded data.

Store

1. Read the store set id
2. Set the instruction number of the

current store in the corresponding
entry of the LFST.

3. Can be used to speculatively
forward data to loads in its store
set.

Whenever we detect a load-store dependence, we
update the SSIT and LFST

McGraw-Hill |

Load Latency Speculation

• A load might hit in the L1 cache (2 cycles)
or might go to the lower levels of the memory system.

• We don’t know for sure

Advanced Computer Architecture. Smruti R. Sarangi 14

Pipeline

L1 d-cache

L2 cache

Main memory

1-2 cycles: hit rate: 90%

10-50 cycles: hit rate: 50%

300 cycles: hit rate: 100%

McGraw-Hill |

Make a guess

Advanced Computer Architecture. Smruti R. Sarangi 15

For load instructions, predict if it will hit in the data cache or
not. If it will, do an early broadcast.

Design a hit-miss predictor. Same idea as branch
predictors.

McGraw-Hill | Advanced Computer Architecture. Smruti R. Sarangi 16

Bit
Masking

Data
redund-a

ncy

Error
checking

code

Register
spill
code

Virtual
function

code

Constants

Value prediction: Why are values predictable?

McGraw-Hill |

Value Predictor

Last value

Stride based

Based on profiling
results

Advanced Computer Architecture. Smruti R. Sarangi 17

McGraw-Hill |

Using an additional predictor for confidence

• First, use the confidence table to find out if it makes sense to predict
• Simultaneously, make a prediction using a predictor table (value,

memory dependence, ALU result)
• Predictor table can contain 1 value, or the last k values
• Make a prediction, and use it if it has high confidence
• Update both the tables when the results are available
• If needed recover with a replay/flush mechanism

Confidence
Table

(uses sat.
counters)

PC Confidence
Predictor

Table

PC Prediction

18Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

Contents

19Advanced Computer Architecture. Smruti R. Sarangi

1. Load Speculation

2. Replay Mechanisms

3.

4.

5.

AGENDA ITEM 06
Green marketing is a practice whereby companies seek to go above and beyond.

Simpler Version of an OOO Processor

Compiler based Techniques

EPIC based Techniques: Intel Itanium

McGraw-Hill |

Replay

• Flushing the pipeline for every misspeculation is not a wise thing

• Instead, flush a part of the pipeline (or only those instructions that have
gotten a wrong value)

• Replay those instructions once again (after let’s say the load completes
its execution)

• When the instructions are being replayed, they are guaranteed to use the
correct value of the load

• Identify and replay the forward slice 🡪

20Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

Forward Slice of Instruction I0

Advanced Computer Architecture. Smruti R. Sarangi 21

I0

I1 I2

I3 I4

I5 I6

Forward
slice

A forward slice contains an instruction’s consumers, its
consumers and so on.

McGraw-Hill |

Non-Selective Replay

Trivial Solution: Flush the pipeline between the dispatch and execute
stages

Smarter Solution
• It is not necessary to flush all the instructions between the schedule and

execute stages
• Try to reduce the set of instructions
• Define a window of vulnerability (WV) for n cycles after a load is

selected. A load should complete within n cycles if it hits in the d-cache
and does not wait in the LSQ

• However, if the load takes more than n cycles, we need to do a replay

22Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

Example

• Let us say that instructions 2, 3, and 4 had one
operand waking up in the WV of instruction 1

• If there is a misspeculation, all three instructions
get squashed

• Instruction 1 gets reissued with the correct value
later

Advanced Computer Architecture. Smruti R. Sarangi 23

1: ld r1, [r2]
2: add r4, r1, r3
3: add r5, r6, r7
4: add r8, r9, r10

Predict
the value

squash
them

McGraw-Hill |

Instruction Window Entry

• When an operand becomes ready, we set its timer to n

• Every cycle it decrements (count down timer)

• Once it becomes 0, we can conclude that this instruction
will not be squashed

24

Ta
g

Ready
bit
Time
r

Kill
wire

Set to N if
the
tag matches

Ta
g bu
s

1 if the
timeris non-zero, else
0

Set after a
misspeculation

Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

More about Non-Selective Replay

• We attach the expected latency with each instruction
packet as it flows down the pipeline

Wherever there is an additional delay (such as a cache miss)
• Time for a replay
• Set the kill wire
• Each instruction window entry that has a non-zero timer,

resets its ready flag

We now have a set of instructions that will be replayed

Methods of replaying instructions

25Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

Two methods of replaying

Method 1: Keep instructions that have been issued in the
issue queue (see reference)

IW Pipeline Stages Verify

verification status

remove from the IW
if verified

26Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

Two methods of replaying - II

• Move the instructions to a dedicated replay queue after issue

• Once an instruction is verified, remove it from the replay queue

IW Pipeline Stages

Replay queue

Verify

remove from
the IW

verification status

remove from replay
queue if verified

27

Method 2:

Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

Orphan Instructions

• Assume that the load instruction misses in the L1
cache

• The add, sub, and xor instructions will need to be
squashed, and replayed

• For the add and sub instructions, tag will be
broadcast

 What about the xor instruction?
Say that r6’s ready bit was forcefully set to 0

ld r1, 8[r4]
add r2, r1, r1
sub r4, r3, r2
xor r5, r6, r7

28Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

Orphan Instructions - II

• Keep track of squashed instructions.

• Re-broadcast tags of orphan instructions.
• 🡪 We need to dynamically detect which instructions

are orphans.

Advanced Computer Architecture. Smruti R. Sarangi 29

Impractical Method

Better Approach

• Let the orphan instruction reach the head of the ROB

• Execute and commit it.

McGraw-Hill |

Delayed Selective Replay

• Let us now propose an idea to replay only those instructions that
are in the forward slice of the misspeculated load

• Let us extend the non-selective replay scheme

• At the time of asserting the kill signal, plant a poison bit in the
destination register of the load

• Propagate the bit along the bypass paths and through the register
file

• If an instruction reads any operand whose poison bit is set, then
the instruction’s poison bit and its destination register are also set.

• When an instruction finishes execution 🡪

30Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

Delayed Selective Replay - II

When an instruction finishes execution 🡪
• Check if its poison bit is set.
• If yes, squash it
• If no, remove the instruction from the IW (it is verified to be correct)

Issues with this scheme
• It is effective, but assumes that we know the value: n
• This might not be possible all the time
• Instructions in the WV that have not been issued might become

orphans

31Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

Orphan Instructions

• We can always wait for the instruction to reach the head of the
ROB.

• Another scheme: Let’s say instruction J was orphaned because
one of its operands (woken up by inst. K) was reset back to a
non-ready state.

• Instruction K will later come back to rescue J, via broadcasting
on the completion bus.

32Advanced Computer Architecture. Smruti R. Sarangi

Inst.
I

broadcast
s

N

Misspeculation for
Inst. IAssert the kill
wire

Inst.
K

broadcast
s

Inst. K
broadcastson the completion
bus

McGraw-Hill |

Token Based Selective Replay

Let us use a pattern found in most programs:
• Most of the misses in the data cache are accounted for by a

relatively small number of instructions
• 90/10 thumb rule 🡪 90% of the misses are accounted for by 10%

of instructions
• Predictor 🡪 Given a PC, predict if it will lead to a d-cache miss
• Use a predictor similar to a branch predictor at the fetch stage

Prediction
Table

PC Hit/miss prediction

33Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

After Predicting a d-cache Miss

Instructions that are predicted to miss, will have a non-deterministic
execution time (most likely) and lead to replays (set S1)

Other instructions will not lead to replays (most likely) (set S2)

Let us consider an instruction in set S1
• At decode time, let the instruction collect a free token
• Save the id of the token in the instruction packet
• Example: assume the instruction: ld r1, 4[r4] is predicted to miss

• Save the id of the token in the instruction packet of this instruction

• Say that the instruction gets token #5
• This instruction is the token head for token #5

• Let us propagate this information to all the instructions dependent
on the load
• If this load fails, all the dependent instructions fail as well

34Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

Structure of the Rename Table

• If an instruction is a token head, we save the id of the token that it owns
in the instruction packet

• Assume we have a maximum of N tokens.
• tokenVec is an N-bit vector

• For the token head instruction, if it owns the ith token, set the ith bit to true in
tokenVec

• Tokens are propagated the same way as poison bits

rename
table

r1 phy. reg

tokenVec

35Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

While reading the rename table ...

• Read the tokenVecs of the source operands

• Merge the tokenVecs of the source operands

• Save the merged tokenVec for the destination register (in the
rename table)

add r1, r2, r3

36Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

After execution

After the token head instruction completes execution, see if it took
additional cycles (verification of latency speculation)
• If YES, broadcast the token id to signal a replay (Case 1)
• If NO, broadcast the token id to all the instructions. They can turn

the corresponding bit off. (Case 2)

Case 1

Replay

Case 2

37Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

Instructions in S2

• Assume an instruction that was not predicted to miss actually misses

• No token is attached to it

• Wait till it reaches the head of the ROB; flush the pipeline.

38Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

Contents

39Advanced Computer Architecture. Smruti R. Sarangi

1. Load Speculation

2. Replay Mechanisms

3.

4.

5.

AGENDA ITEM 06
Green marketing is a practice whereby companies seek to go above and beyond.

Simpler Version of an OOO Processor

Compiler based Techniques

EPIC based Techniques: Intel Itanium

McGraw-Hill |

A Simpler Design

Physical Register File (PRF) based design

Advanced Computer Architecture. Smruti R. Sarangi 40

Fast and efficient

State recovery is complex

Physical register management
is onerous

Architectural Register File (ARF) based design

Have a dedicated architectural register file that
stores the committed state

Enhance the ROB to store uncommitted values

McGraw-Hill |

Let us now look at a different kind of OOO processor

• Instead of having a physical register file, let us have an architectural register
file(ARF)

• A 16-entry architectural register file that contains the committed architectural state.

Decode Renaming

ARF

ROB

IW Register
Write

Committed
State

Temporary
State

Commit
Time

Rest remains
the same

Write back
uncommitted

results

41Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

Changes to renaming

Entry in the RAT table

ROB id ROB/RF
bit

• ROB/RF bit 🡪 1 (value in the ROB), 0 (value in the ARF)
• Use the ROB if the ROB/RF bit indicates that the value might be

there in the ROB
• Entry in the ROB: (ready bit indicates if the value is in the ROB (1)

or being generated in the pipeline (0))

Instruction value destready dest

42

Entry in
the RAT

table

Entry in
the ROB

Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

Changes to Dispatch and Wakeup

Each entry in the IW now stores the values of the operands
• Reason: We will not be accessing the RF again

What is the tag in this case?
• It is not the id of the physical register.
• It is the id of the ROB entry.

What else?
• Along with the tag, we need to broadcast the value of the operand, if we

will not get the value from the bypass network
• This will make the circuit slower

43Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

Changes to Wakeup, Bypass, Reg. Write and
Commit

• We can follow the same speculative wakeup strategy and broadcast a tag
(in this case, id of ROB entry) immediately after an instruction is selected.
Tags+values are broadcast when the instruction is in the write-back
stage.

• Instructions directly proceed from the select unit to the execution units

• All tags are ROB ids.

• After execution, we write the result to the ROB entry

• Commit is simple. We always have the architectural state in the ARF.

• We just need to flush the ROB.

44Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

PRF based design vs ARF based design

 points in the PRF based design
• A value resides in only a single location (PRF). Multiple copies of

values are never maintained. In a 64-bit machine, a value is 64 bits
wide.

• Each entry in the IW is smaller (values are not saved).
• The broadcast also uses 7-bit tags

 Restoring state is complicated

 points in the ARF based design
• Recovery from misspeculation is easy
• We do not need a free list

 Values are stored at multiple places (ARF, ROB, IW)

45Advanced Computer Architecture. Smruti R. Sarangi

McGraw-Hill |

Contents

46Advanced Computer Architecture. Smruti R. Sarangi

1. Load Speculation

2. Replay Mechanisms

3.

4.

5.

AGENDA ITEM 06
Green marketing is a practice whereby companies seek to go above and beyond.

Simpler Version of an OOO Processor

Compiler based Techniques

EPIC based Techniques: Intel Itanium

McGraw-Hill |

Compiler based Optimizations

Can the compiler optimize the code?

Advanced Computer Architecture. Smruti R. Sarangi 47

Reduce code size

Increase ILP

Reduce slow instructions
with fast ones

McGraw-Hill |

Constant Folding

Advanced Computer Architecture. Smruti R. Sarangi 48

We can directly replace a with 10, b
with 20, and c with 400

McGraw-Hill |

Strength Reduction

Advanced Computer Architecture. Smruti R. Sarangi 49

slow

fast

McGraw-Hill |

Common Subexpression Elimination

• Each line in the second example corresponds to one
line of assembly code.

• We do not compute (a+b) many times.

Advanced Computer Architecture. Smruti R. Sarangi 50

McGraw-Hill |

Dead Code Elimination

Advanced Computer Architecture. Smruti R. Sarangi 51

Dead
code

McGraw-Hill |

Silent Stores

• Silent stores write the same value that is already
present

Advanced Computer Architecture. Smruti R. Sarangi 52

Silent
store

McGraw-Hill | Advanced Computer Architecture. Smruti R. Sarangi 53

Loop Based Optimizations

McGraw-Hill |

Loop Invariant based Code Motion

• There is no point setting (val = 5) repeatedly.

Advanced Computer Architecture. Smruti R. Sarangi 54

Original

Loop
Invariants

Moved

McGraw-Hill |

Induction Variable based Optimization

Advanced Computer Architecture. Smruti R. Sarangi 55

Original Induction
variable

Replace
a multiply
with an add

Optimized

• An add operation is faster than a multiply operation. Hence, it makes
sense to replace multiplies with adds.

-6

McGraw-Hill |

Loop Fusion

Advanced Computer Architecture. Smruti R. Sarangi 56

Original

Optimized

Fuse the loops

• Loop fusion reduces the instruction count and the number of branches
significantly

McGraw-Hill |

Loop Unrolling - I

Advanced Computer Architecture. Smruti R. Sarangi 57

Original loop

Assembly code

McGraw-Hill | Advanced Computer Architecture. Smruti R. Sarangi 58

Loop Unrolling - II

Advantage: fewer total
instructions and specifically
fewer branch instructions

McGraw-Hill | Advanced Computer Architecture. Smruti R. Sarangi 59

Software Pipelining

McGraw-Hill | Advanced Computer Architecture. Smruti R. Sarangi 60

L

S

I

McGraw-Hill |

Visualization of the Execution Process

Advanced Computer Architecture. Smruti R. Sarangi 61

We can create our loops differently. Execute instructions from
different iterations.

McGraw-Hill |

Can we execute instructions in this order?

Advanced Computer Architecture. Smruti R. Sarangi 62

I0 🡪 S1 🡪 L2

I1 🡪 S2 🡪 L3

I2 🡪 S3 🡪 L4

Order of
operations
in a row

Treat each row as
a pipeline stage. Execute
instructions from different
iterations roughly at the
same time.

McGraw-Hill |

Advantages of Software Pipelining

• Consider this order:

I0 🡪 S1 🡪 L2 🡪 I1 🡪 S2 🡪 L3 🡪 I2 🡪 S3 🡪 L4

• The gap between the L, S, and I blocks is one block
• This means that we can absorb delays
• We can accommodate multi-cycle loads without stalls
• The blocks I, S, and L can possibly be executed concurrently

• There is a problem
• How do we execute three blocks (belonging to different iterations)

possibly concurrently?
• Solution: Use different loop iterators

Advanced Computer Architecture. Smruti R. Sarangi 63

McGraw-Hill |

Different Loop Iterators: Group of 3 iterations

Advanced Computer Architecture. Smruti R. Sarangi 64

McGraw-Hill |

Code with Different Loop Iterators

Advanced Computer Architecture. Smruti R. Sarangi 65

Unroll the loop 3
times

We cannot execute S1
and L2 in parallel because
of the dependence on r5

McGraw-Hill | Advanced Computer Architecture. Smruti R. Sarangi 66

If we had 32
registers, we could
do this very easily

and elegantly

McGraw-Hill |

Epilogue and Prologue

Advanced Computer Architecture. Smruti R. Sarangi 67

McGraw-Hill |

Solution without Unrolling

Advanced Computer Architecture. Smruti R. Sarangi 68

i = -1; t = B[0];
.loop if (i < 298) {
 i++;
 A[i] = t;
 t = B[i+1];
}
A[299] = t;

McGraw-Hill |

Unrolling and Mixing

Advanced Computer Architecture. Smruti R. Sarangi 69

McGraw-Hill |

Contents

70Advanced Computer Architecture. Smruti R. Sarangi

1. Load Speculation

2. Replay Mechanisms

3.

4.

5.

AGENDA ITEM 06
Green marketing is a practice whereby companies seek to go above and beyond.

Simpler Version of an OOO Processor

Compiler based Techniques

EPIC based Techniques: Intel Itanium

McGraw-Hill |

.

• Sounds like a promising idea …

• Less hardware 🡪 less power, less complexity

• Modern software is quite fast and quite intelligent

• Basic idea:
• Create bundles of several instructions (using the compiler)
• Schedule a bundle in one go
• Assume that all dependences are handled.

Advanced Computer Architecture. Smruti R. Sarangi 71

Can we outsource the work of renaming and scheduling
to the compiler?

McGraw-Hill |

VLIW Processors

• VLIW (Very Long Instruction Word) processors were the first designs
in this space.

• Bundle instructions into long words
• If an instruction is 4 bytes, bundle 4 into a 16-byte word
• Schedule and execute all instructions together

• Problems caused by
• Conditional if statements – control flow not predictable
• Memory instructions – addresses are computed at runtime

Advanced Computer Architecture. Smruti R. Sarangi 72

Basic philosophy of many
VLIW processors

It is the compiler’s job to
ensure correctness

McGraw-Hill |

If Statements: Predicated Execution

Use predicated execution (remember GPUs).

Advanced Computer Architecture. Smruti R. Sarangi 73

If Statements

• There maybe a branch in the bundle
• If it is taken, the rest of the instructions are invalid
• Mark them with an invalid bit
• Let these instructions pass through the pipeline (just don’t

process them)
• Remember predicated execution in GPUs

McGraw-Hill |

Curious Case of Memory Instructions

• We can have multiple memory instructions in a bundle

• The addresses are computed at runtime

• In this case, we have a hazard

• Same is the case for two store instructions, and a load 🡪 store
dependence

Advanced Computer Architecture. Smruti R. Sarangi 74

st r1, 8[r2]
ld r3, 8[r4]

Avoid such situations in software or
hardware

McGraw-Hill |

VLIW vs EPIC

EPIC

VLIW

Advanced Computer Architecture. Smruti R. Sarangi 75

• Given that VLIW processors do not necessarily guarantee
correctness, their usability is limited

• Mostly used in digital signal processors
• VLIW processors have been replaced by EPIC processors
• EPIC 🡪 Explicitly Parallel Instruction Computing
• They guarantee correctness

• Irrespective of the compiler

McGraw-Hill |

Intel Itanium Processor

• Unique collaboration between Intel and HP

• Aim:
• EPIC processor
• Designed to leverage the best of software and hardware
• Targeted the server market
• Primarily gets rid of the scheduler: instruction window, wakeup,

select, and broadcast
• The branch predictor, decode unit, execute units, and advanced

load-store handling are still required

Advanced Computer Architecture. Smruti R. Sarangi 76

McGraw-Hill |

Fetch Stage

• Each bundle contains 3 instructions

• The decoupling buffer can hold 8 such bundles

Advanced Computer Architecture. Smruti R. Sarangi 77

Read 32 bytes from the i-cache

We can fit six instructions

Bundle 1 Bundle 2

Decoupling Buffer

McGraw-Hill |

Branch Predictors

Itanium has four types of branch predictors

• Compiler directed
• Four special registers: Target Address Registers (TARs)
• The compiler populates them.
• Contain a PC and a target
• Whenever the current PC matches the PC in a TAR 🡪 predict

taken and jump to the target

• Traditional Predictor
• Large PAp predictor

Advanced Computer Architecture. Smruti R. Sarangi 78

McGraw-Hill |

Branch Predictors – II

• Multi-way Branches
• Compilers ensure that (typically) the last instruction in a bundle is

a branch
• If there are multiway branches: there are many possible targets for

a given bundle
• Predict the first instruction that is most likely a taken branch and

then predict its target

• Loop Exit Predictor
• The compiler marks the loop instruction
• It also populates the register with the loop iteration count
• The predictor keeps decrementing the loop count till it reaches 0.

Then it predicts a loop exit.

Advanced Computer Architecture. Smruti R. Sarangi 79

McGraw-Hill |

This part of the pipeline

• Itanium has 9 issue ports: 2 for memory, 2 for integer, 2 for floating
point, 3 for branch instructions

• Disperse the instructions 🡪 map instructions to issue ports

• Data hazards:
• Option 1: Avoid data hazards in a bundle or put nop instructions or

forward results.
• Option 2: Use stop bits. Instructions between two instructions with

their stop bits set to 1 are independent of each other.

• Structural hazards: Each bundle indicates the resources that it
requires. This information is used to avoid structural hazards.

Advanced Computer Architecture. Smruti R. Sarangi 80

Instruction
Fetch

Instruction
Dispersal

Register
Remapping

McGraw-Hill |

Register Remapping Stage

Large 128-entry register file.

Advanced Computer Architecture. Smruti R. Sarangi 81

32 static registers

96 stacked
registers

Visible to all
functions

Limited visibility
across functions

Allocate different sets of virtual registers to each function.
This avoids spilling.

McGraw-Hill |

Example: Function foo calls function bar

Advanced Computer Architecture. Smruti R. Sarangi 82

We deliberately create an overlap in the virtual register set to pass
parameters.

McGraw-Hill |

Register Stack Frame

• The in and local registers are preserved across function calls.

• The out registers are used to send parameters to callee functions.

• An alloc instruction automatically creates such a register stack
frame.

• Communicating return values.

Advanced Computer Architecture. Smruti R. Sarangi 83

McGraw-Hill |

Binary Search

Advanced Computer Architecture. Smruti R. Sarangi 84

No processing done after receiving
the return value. Just pass it on.

This is known as tail
recursion

McGraw-Hill |

Register Stack Frame

• The in and local registers are preserved across function calls.

• The out registers are used to send parameters to callee functions.

• An alloc instruction automatically creates such a register stack
frame.

• Communicating return values.
• Store the return values in a static register
• In this case, directly jump to the return address in the main

function.
• We don’t need to process return values.

Advanced Computer Architecture. Smruti R. Sarangi 85

McGraw-Hill |

Support for Software Pipelining and Overflows

Main Problem: We run out of registers

• Itanium has a Register Stack Engine (RSE)
• Automatically handles the spilling of registers to memory and

restoring them

Software Pipelining

• We use separate registers for the same variable across different
iterations.

• This issue is taken care of automatically

• Notion of a rotating register set
• Assign registers based on the loop iteration number
• Easier to write the code of SW-pipelined loops

Advanced Computer Architecture. Smruti R. Sarangi 86

McGraw-Hill |

High Performance Execution Engine

Advanced Computer Architecture. Smruti R. Sarangi 87

Scoreboard

• Simple mechanism for OOO execution
• Makes instructions wait till it is safe to execute them
• finished field 🡪 1 if it has finished its execution, 0 otherwise.
• fu 🡪 Name of the functional unit

McGraw-Hill |

Conditions: Instruction I

Advanced Computer Architecture. Smruti R. Sarangi 88

WAW Hazards 1. Check all the earlier entries
2. For each earlier entry E the

following expression should be false

WAR Hazards
1. Check all the earlier entries
2. For each earlier entry E the

following expression should be false

McGraw-Hill |

Conditions: II

• Instructions wait in the scoreboard until they are safe
• No hazards

Advanced Computer Architecture. Smruti R. Sarangi 89

RAW Hazards
1. Check all the earlier entries
2. For each earlier entry E the

following expression should be false

Structural Hazards

1. For each earlier entry E

McGraw-Hill |

Predication

• If we flush the pipeline upon a branch misprediction
• It would be quite unfair

• Let the if statement just be used to mark an instruction with the
result of the comparison

• Store the result in a flags register

• The rest of the instructions are processed regardless of the
branch outcome

• Some results modify the architectural state, many do not

Advanced Computer Architecture. Smruti R. Sarangi 90

Consider the following
piece of code if(rand () %2 ==

0)
x = y;

else
x = z;

McGraw-Hill |

Code without Predication

Count the number of branch instructions.

Advanced Computer Architecture. Smruti R. Sarangi 91

/* mappings : x <-> r1 , y <-> r2 , z <-> r3 */
mod r0 , r0 , 2 /* assume r0 contains the output of rand () ,
 compute the remainder when dividing it by 2
*/

 cmp r0 , 0 /* compare */
 beq . even
 mov r1 , r3 /* odd case */
 b. exit

 .even :
 mov r1 , r2 /* even case */

. exit :

McGraw-Hill |

Predicated Instructions

• The comparison generates predicates (flags)
• po 🡪 number is odd, pe 🡪 number is even

• If the predicate is correct, the instruction gets executed, otherwise not

• Itanium sets and maintains the predicate registers

• An instruction is executed if all the predicate registers are set to 1 for
the instruction.

Advanced Computer Architecture. Smruti R. Sarangi 92

 /* mappings : x <-> r1 , y <-> r2 , z <-> r3 */

 mod r0 , r0 , 2 /* assume r0 contains the output of rand ()
 compute the remainder when dividing it by */

 po ,pe = cmp r0 , 0 /* compare and set the predicates */
 [po] mov r1 , r3 /* odd case */
 [pe] mov r1 , r2 /* even case */

McGraw-Hill | Advanced Computer Architecture. Smruti R. Sarangi 93

Pipeline

McGraw-Hill |

Load Boosting

• Boost a load and some instructions that use its value to a point before
“where it appears in the code”.

• Loads are almost always on the critical path 🡪 hence, boosting them
is beneficial because they can get their data early

• Put the load address in the ALAT
• Advanced Load Address Table

• Subsequently, each store checks the ALAT for a match, and marks it
(upon an address match)

• Put a load-check (ld.c) instruction at the original point
• Check the ALAT
• If there have been no intervening stores to the same address, the

speculation is successful.
• Else, re-execute the load and its boosted forward slice

Advanced Computer Architecture. Smruti R. Sarangi 94

McGraw-Hill | Advanced Computer Architecture. Smruti R. Sarangi 95

A host of compiler optimizations can be used to speed up
programs and improve their memory access behavior.

EPIC processors guarantee correctness as well as follow
the VLIW model that gives primacy to the compiler.

We can use the ROB as the physical register file and use it to
buffer temporary values. The ARF can contain the committed
state.

There are three methods of replaying instructions:
non-selective, delayed selective and token-based replay

There are four kinds of aggressive speculation:
load address, dependence, latency, and value
speculation.

Conclusion

McGraw-Hill | 96Advanced Computer Architecture. Smruti R. Sarangi

The
End

