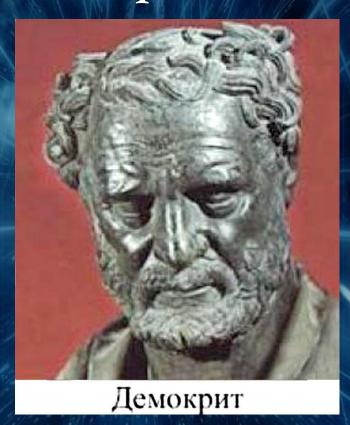
Модели атомов. Опыт Резерфорда.

- 1. Прочитать учебник с. 247 251.
- Работаем с презентацией: разбираемся и переписываем информацию в тетрадь (текст, рисунки, пояснения к ним).


В истории развития физики одна из самых интересных и увлекательных страниц - это история открытия сложного строения атома. На протяжении веков люди думали о строении вещества...

Выстраивалась логическая цепочка устройства мира

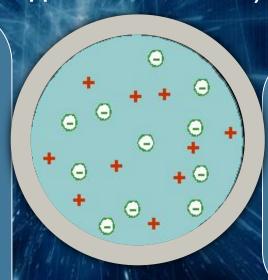
Атом отвечает за физические и химические свойства вещества.

2500 лет назад Демокрит: вещества состоят из атомов. «Атом» означает «неделимый» 19 век – первые сомнения.

На основе открытий и исследований в физике, химии к началу 20 в. ученым стало понятно, что атом имеет сложную структуру:

- состоит из положительно заряженных частиц и электронов;
- в целом атом электро нейтрален ;
- m_e << m_{am} ⇒ практически вся масса атома приходится на его положительно заряженную часть.

Оставалось ответить на вопрос – как устроен атом?


Джозеф Джон Томсон

(1856-1940 г.г.)

Английский ученый, открывший электрон и предложивший модель строения атома

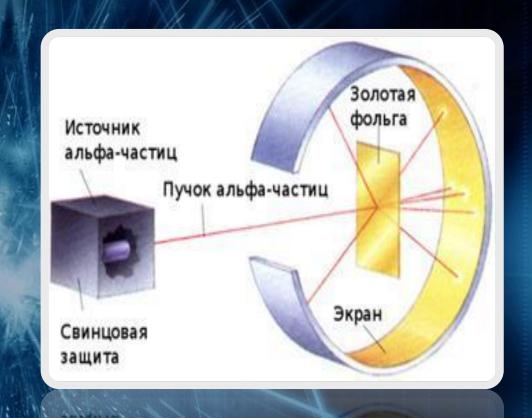
Модель атома Томсона ("Пудинг с изюмом")

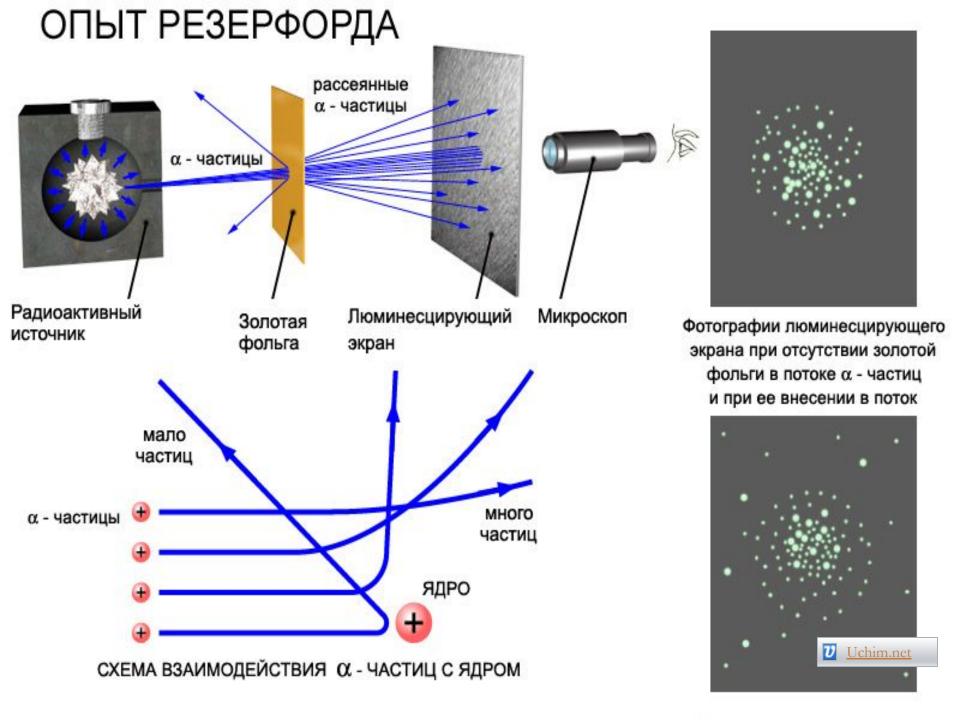
Атом – шар, по всему объёму которого равномерно распределён положительный заряд, а электроны вкраплены в него, как «изюминки в кексе» или «в пудинг»е

Модель не объясняла устойчивость атома и нуждалась в экспериментальной проверке

Цель опыта:

исследовать строение и состав атома


Резерфорд предложил бомбардировать атомы золота α - частицами


Характеристика α - частиц

- $u = 20000 \, \text{km/c}$
- **q** = 2qe
- m_α > m е в 8000 раз
- При ударе об экран вызывает его свечение – вспышку.

Альфа-частицы от радиоактивного источника, пройдя через диафрагму, попадают на тонкую фольгу из золота. Она имеет толщину около микрона, т.е. СОСТОИТ приблизительно из 3000 атомных слоев. При попадании альфа-частицы на экран возникает свечение люминесцентного СЛОЯ

Установка опыта Резерфорда

Наблюдения Резерфорда показали

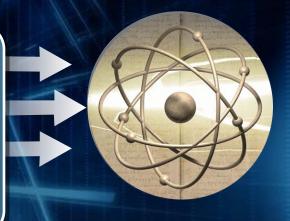
Большинство альфачастиц легко проходит через фольгу не отклоняясь

Атом не является сплошным, в нем есть пустоты

Некоторое количество альфа-частиц отклоняется на небольшие углы от своей траектории

Есть альфа-частицы, отклоняющиеся от фольги на углы более 90^0 и даже на угол 180° .

В атоме есть положительные частицы

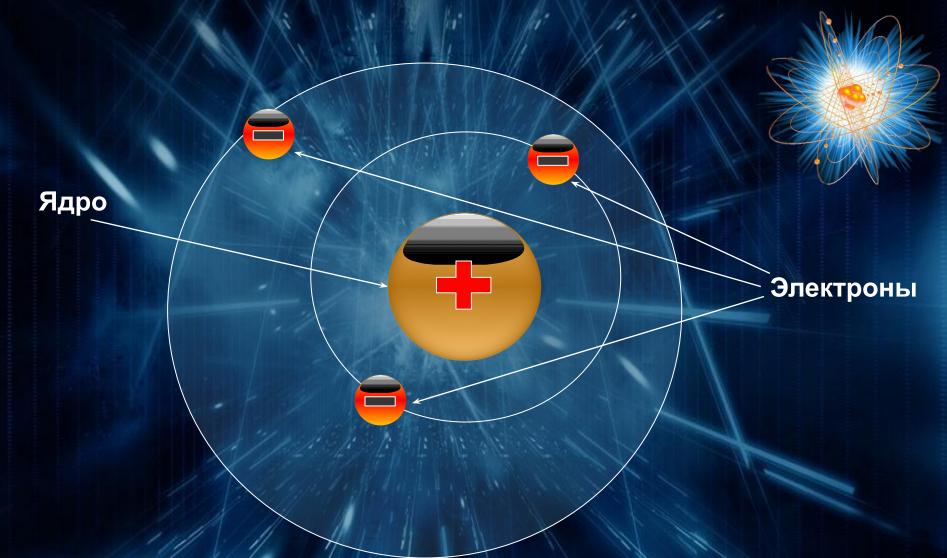

Выводы по результатам опыта:

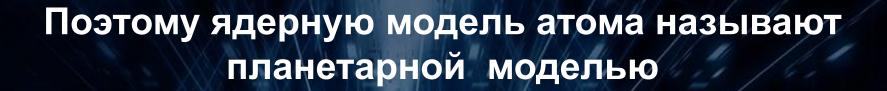
Электроны в виду лёгкости не могли изменить траекторию α - частиц

Поведение α – частиц можно объяснить, если весь положительный заряд атома сосредоточить в

одном месте: «керн» - ядро

Ядерная модель строения атома


Модель атома Резерфорда


В центре атома находится положительно заряженное ядро, занимающее малый объем атома. В ядре сосредоточена практически вся масса атома

Вокруг ядра движутся электроны, масса электронной оболочки незначительна

Атом электрически нейтрален, т.к. заряд ядра равен модулю суммарного заряда электронов

электроны вращаются вокруг ядра, как планеты обращаются вокруг ядра

Чем ближе альфачастица пролетает к ядру, тем на больший угол она отклоняется от своей траектории. Если удар часмтицы с ядром центральный, то частица рикошетом отлетает назад.

Опыт Резерфорда позволил:

В результате опыта по рассеянию альфа-частиц:

Была доказана несостоятельность модели атома Томсона

Выдвинута ядерная модель строения атома

Определён радиус ядра атома

 $10^{-12} - 10^{-13}$ CM

Д/3 § 57(c.247-251) Учить записи в тетради и запомнить.