Беседы о прикладной статистике

Семинар 5. Доверительные интервалы для среднего. Критерий t Стьюдента. Критерии Уилкоксона для ранговых сравнений

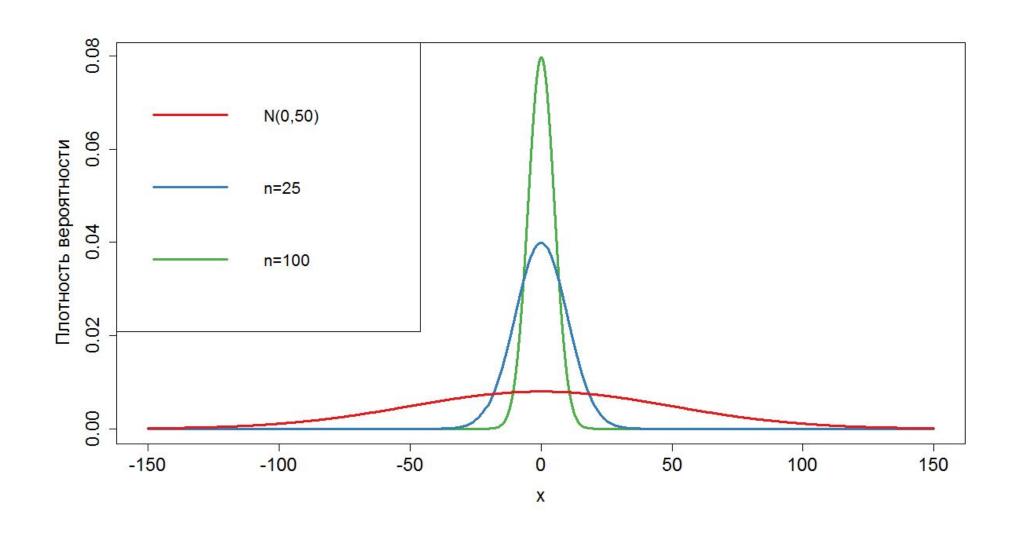
Фастовец И.

Α.

Стандартное отклонение распределения выборочных средних

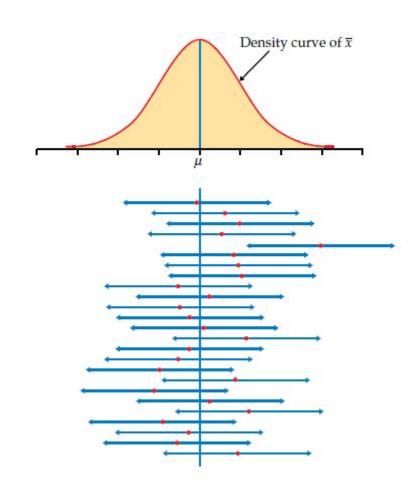
- Если из нормального распределения $N(\mu,\sigma)$ взять выборку объемом n, тогда средние по выборкам будут иметь нормальное распределение $N(\mu,\frac{\sigma}{\sqrt{n}})$
- Центральная предельная теорема: если из любого распределения, имеющего среднее μ и конечное стандартное отклонение σ взять выборку критически большого объема n, тогда распределение средних по выборкам будет приблизительно нормальным $N(\mu, \frac{\sigma}{\sqrt{n}})$

Стандартное отклонение распределения выборочных средних



z - доверительный интервал для среднего

- Среднее µ неизвестно, стандартное отклонение σ известно
- Предел погрешности для среднего \overline{x} будет иметь вид $m=z'\frac{\sigma}{\sqrt{n}}$, где z'- значение на стандартной нормальной кривой с площадью С между критическими точками -z' и z' (берем из таблицы)
- Доверительный интервал на уровне доверительной вероятности С будет равен $\overline{x} \pm m$
- Объем выборки, необходимый для нужного предела погрешности $n=z'\left(\frac{z'\sigma}{m}\right)^2$



Статистические сравнения

- Нулевая гипотеза утверждение, которое мы проверяем при помощи тестов значимости. В данном случае H₀: сравниваемые средние генеральных совокупностей равны
- *P значение* расчетная вероятность того, что случайная величина с данным распределением (распределением тестовой статистики при нулевой гипотезе) примет значение, не меньшее, чем фактическое значение тестовой статистики. Чем меньше Р значение, тем лучше
- Если Р значение меньше заданного уровня доверительной вероятности α (например, 0.05), мы говорим, что результат статистически значимый

z - тест значимости разницы среднего распределения и заданной константы

- Тестируем H_0 : $\mu = \mu_0$, где μ_0 заданная константа, а μ неизвестное среднее нормального распределения со стандартным отклонением σ .
- Взята выборка объемом n со средним \overline{x} . Тогда статистика z имеет

вид:
$$z=rac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}$$

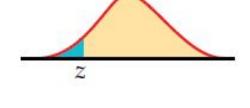
 H_a : $\mu > \mu_0$ is $P(Z \ge z)$



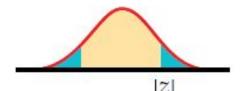
• По таблице находим соответствующее

P - значение, делаем вывод о значимости различий

$$H_a$$
: $\mu < \mu_0$ is $P(Z \le z)$



$$H_a$$
: $\mu \neq \mu_0$ is $2P(Z \geq |z|)$



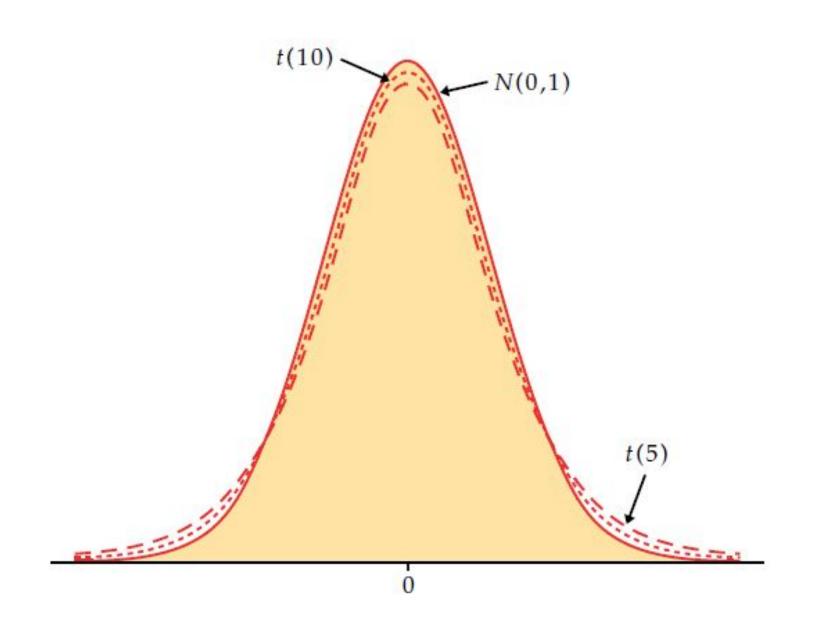
z тест значимости разницы двух средних

- Предположим, что \overline{x}_1 среднее значение выборки объемом n из распределения $N(\mu_1, \sigma_1)$, а \overline{x}_2 среднее независимой выборки объемом n из распределения $N(\mu_2, \sigma_2)$. Тогда z статистика для двух выборок будет иметь вид
- $z=rac{(\overline{x}_1-\overline{x}_2)-(\mu_1-\mu_2)}{\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}}$ и будет распределена в соответствии с N(0,1)

Семейство распределений t Стьюдента

- Если σ неизвестна, то для нахождения доверительного интервала или тестирования значимости различий применяют не $\frac{\sigma}{\sqrt{n}}$, а оценку стандартного отклонения распределения среднего по выборкам $\frac{s}{\sqrt{n}}$, где s стандартное отклонение выборки. Эта величина именуется стандартной ошибкой среднего
- Возьмем выборку объемом n из генеральной совокупности $N(\mu,\sigma)$, тогда t статистика для одной выборки примет вид $t=\frac{\overline{x}-\mu}{s/\sqrt{n}}$ и будет иметь t распределение с количеством степеней свободы n-1

Нормальное и t распределения



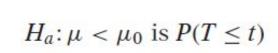
t доверительный интервал для одной выборки

- Возьмем случайную выборку из генеральной совокупности с неизвестным средним µ и неизвестным стандартным отклонением
- t доверительный интервал для μ на уровне доверительной вероятности C будет равен $x \pm t' \frac{s}{\sqrt{n}}$, где t' значение на кривой t распределения t(n-1) площадью C между критическими точками -t' и t'
- $t'\frac{s}{\sqrt{n}}$ в данном случае будет пределом погрешности. Этот интервал является точным в случае нормального распределения генеральной совокупности и приблизительно корректным для больших n в других случаях

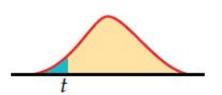
t тест для одной выборки (сравнение с константой)

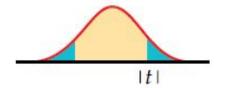
- Случайную выборку объемом n взяли из распределения с неизвестным средним μ и неизвестным стандартным отклонением. Задача – сравнить μ с заданной константой μ₀
- Чтобы протестировать H_0 : $\mu=\mu_0$ рассчитаем значение t статистики $t=\frac{\overline{x}-\mu_0}{s_{f/\sqrt{2n}}}$
- По таблице найдем Р-значение
- Сделаем вывод о значимости различий

$$H_a$$
: $\mu > \mu_0$ is $P(T \ge t)$



$$H_a$$
: $\mu \neq \mu_0$ is $2P(T \geq |t|)$





t тест для парных выборок

- Когда некоторая характеристика измерена для одних и тех же объектов до и после воздействия
- Рассчитаем разницу между значениями для каждого объекта
- Проведем t тест для одной выборки для сравнения среднего разниц значений с 0
- t = 6.46, df = 14, P < 0.001

Patient	Moon days	Other days	Difference	Patient	Moon days	Other days	Difference
1	3.33	0.27	3.06	9	6.00	1.59	4.41
2	3.67	0.59	3.08	10	4.33	0.60	3.73
3	2.67	0.32	2.35	11	3.33	0.65	2.68
4	3.33	0.19	3.14	12	0.67	0.69	-0.02
5	3.33	1.26	2.07	13	1.33	1.26	0.07
6	3.67	0.11	3.56	14	0.33	0.23	0.10
7	4.67	0.30	4.37	15	2.00	0.38	1.62
8	2.67	0.40	2.27				

Постановка задачи для двух независимых выборок

- Задача сравнить эффект между двумя группами
- Каждая группа представляет из себя случайную выборку из двух различных распределений

• Эффект в одной группе не зависит от эффекта в другой

группе

Population	Variable	Mean	Standard deviation
1	x_1	μ_1	σ_1
2	x_2	μ_2	σ_2
Population	Sample size	Sample	
1	n_1	\overline{x}_1	<i>s</i> ₁
2	n_2	\overline{x}_2	s_2

t тест Уэлча для двух выборок

• Расчет t статистики будет похож на расчет z статистики, в котором мы заменяем σ на s:

•
$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

- Проблема заключается в расчете количества степеней свободы у этого распределения. Консервативный расчет: взять наименьшее из n_1 -1 и n_2 -1
- Более точная аппроксимация:

$$df = \frac{\left(\frac{s_1}{n_1} + \frac{s_2}{n_2}\right)}{\frac{1}{n_1 - 1} \left(\frac{s_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{s_2^2}{n_2}\right)^2}$$

t тест Уэлча для двух выборок

- Допустим, что одна случайная выборка объемом n_1 взята из нормальной генеральной совокупности со средним μ_1 , а вторая случайная выборка объемом n_2 взята из другой нормальной генеральной совокупности со средним μ_2
- Тогда t-статистика будет иметь вид $\mathbf{t} = \frac{(\overline{x}_1 \overline{x}_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$
- Далее рассчитываем Р-значение по таблице t критерия для количества степеней свободы выбранной аппроксимации

Доверительный интервал Уэлча для разницы средних

- Доверительный интервал для разницы средних на уровне доверительной вероятности С будет иметь вид:
- $(\overline{x}_1 \overline{x}_1) \pm t' \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$, где t' значение кривой t распределения плотности вероятности с площадью C между -t' и t'
- Количество степеней свободы аппроксимируется одним из двух способов

t тест с объединенной оценкой дисперсии

• Если мы предполагаем, что выборки взяты из генеральных совокупностей с одним стандартным отклонением σ_p , формулы приобретают вид:

$$\bullet t = \frac{(\overline{x}_1 - \overline{x}_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$\bullet \ (\overline{x}_1 - \overline{x}_1) \pm t' s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

- Количество степеней свободы в данном случае равно $n_1 + n_2 2$
- Для использования этого теста необходимо проверить однородность дисперсий. Кроме того, выборки должны быть похожими по объему

U тест суммы рангов уилкоксона-іманна-Уитни

- Возьмем случайную выборку объемом n_1 из одной генеральной совокупности и вторую независимую выборку объемом n_2 из второй генеральной совокупности в сумме имеем $N=n_1+n_2$ наблюдений. Проранжируем все N наблюдений. Тогда сумма W рангов первой выборки является статистикой суммы рангов Уилкоксона.
- Если две генеральных совокупности имеют одинаковое непрерывное распределение то W имеет среднее и стандартное отклонение:

$$\mu_W = \frac{n_1(N+1)}{2}$$

• Нахождение Р-значения производим разными методами, лучше всего точным (exact)

$$\sigma_W = \sqrt{\frac{n_1 n_2 (N+1)}{12}}$$

Пример: урожай на двух площадках с сорняками и без

	Wee	Weeds per meter			Yield (bu/acre)				
		0		166.7	172.2	165.0	176.9		
		3		158.6	176.4	153.1	156.0		
 Yield	153.1	156.0	158.6	165.0	166.7	172.2	176.4	176.9	
Rank	1	2	3	4	5	6	7	8	

Treatment	Sum of ranks
No weeds	23
Weeds	13

Тест связанных рангов Уилкоксона

- Применяется для парных выборок
- Взять случайным образом пары выборок объемом n из генеральной совокупности, рассчитать разности значений между парами. Проранжировать эти разности
- Сумма рангов с положительными различиями W^+ является статистикой Уилкоксона для связанных рангов и имеет среднее и стандартное отклонение
- Нахождение Р-значения производится разными методами. Лучше всего производить точный расчет (exact) в программе

$$\mu_{W^+} = \frac{n(n+1)}{4}$$

$$\sigma_{W^+} = \sqrt{\frac{n(n+1)(2n+1)}{24}}$$

Пример: способность детей запоминать сказки с картинками и без

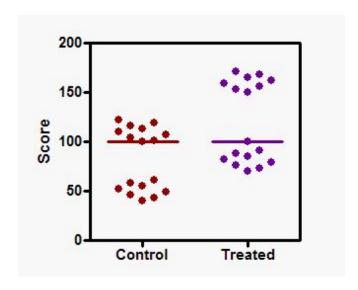
Child	1	2	3	4	5
Story 2 Story 1 Difference	0.77 0.40	0.49 0.72	0.66 0.00	0.28 0.36	0.38 0.55
Difference	0.37	-0.23	0.66	-0.08	-0.17

0.37 0.23 **0.66** 0.08 0.17

Absolute value	0.08	0.17	0.23	0.37	0.66
Rank	1	2	3	4	5

Что тестируют ранговые тесты?

- Ранговые тесты не тестируют различия в средних
- Можно трактовать как значимость различия медиан, но только в случае, если сравниваемые распределения идентичны, что крайне редко. Кроме того, так как ранговые тесты применяют для малых выборок, проверить это невозможно
- H_0 в данном случае формулируют как *отсутствие* систематических различий между сравниваемыми группами
- На примере представлены две выборки и медианы для них



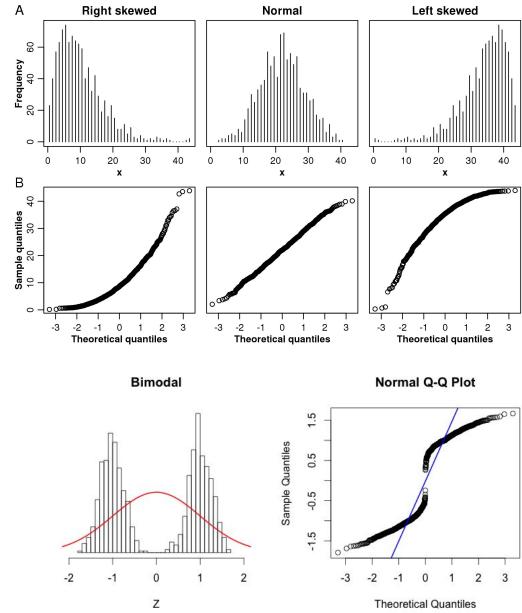
Методы расчета Р-значения ранговых тестов

- Точный метод. Лучший. Перебор всех возможных комбинаций данных для построения точного распределения нужной статистики. При больших выборках не выполним изза слишком большого времени вычисления
- Алгоритмы Монте Карло: пермутационные тесты сравнений и соответствующие им бутстреп доверительные интервалы для любых статистик. По сути перебор ограниченного случайного числа комбинаций. Позволяют получить Р значение с заданной точностью. Хороши для больших выборок
- Аппроксимация W статистики нормальным распределением

 самый простой, но самый ненадежный способ. Тем не
 менее, зачастую хорошо работает при больших выборках

Как проверить нормальность распределения?

- Графики нормальных квантилей (Q-Q плоты, могут быть для разных распределений)
- Формальные тесты:
 их множество, но самые
 распространенные это
 тесты Андерсона-Дарлинга
 и Шапиро-Уилка



Ошибки первого и второго рода

• Ошибка 1 рода происходит, когда мы отвергаем нулевую гипотезу (принимаем альтернативную), когда она правильная*

• Ошибка 2 рода происходит, когда мы не отвергаем нулевую

ГИПОТЕЗУ КОГЛЯ ЗПЕТЕНЦЯТИВНЯВ ГИПОТЕЗЯ ПРАВИПЕНЯЯ*

		Верная гипотеза				
		H_0	H_1			
Результат	H_0	H_0 верно принята	H_0 неверно принята (Ошибка второго рода)			
применения критерия	H_1	H_0 неверно отвергнута (Ошибка <i>первого</i> рода)	H_0 верно отвергнута			

^{*} Chihara Laura and Tim Hesterberg. *Mathematical statistics with resampling and R*. John Wiley & Sons. 2012.

Корректировка на множественные сравнения

- Если производить одновременно не одно, а много сравнений на уровне значимости α = 0.05, то вероятность ошибки первого рода становится выше 0.05
- Для корректировки α существует много различных методов
- Самые простые методы Бонферрони и Шидака
- Поправка Бонферрони: α'= α/m
- Поправка Шидака: $\alpha' = 1 (1 \alpha)^{1/m}$, где m количество сравнений, а α' скорректированный уровень значимости для индивидуальных сравнений
- Количество попарных сравнений находят по формуле $\frac{N(N-1)}{2}$, где N-1 количество групп, которые нужно сравнить между собой

На следующем занятии

- Связь двух количественных переменных
- Меры связи количественных переменных: ковариация, коэффициенты корреляции Пирсона и Спирмена
- Введение в линейную регрессию. Коэффициенты линейной регрессии, проверка значимости
- Немного затронем робастные линейные оценки, устойчивые к выбросам