Практическое применение метода ДМА для исследования, анализа и диагностики свойств ПКМ

ДМА – динамически механический анализ ПКМ – переходы в композиционных материалах(фазовые, температурные)

Задаёмся вопросами

Поиск и введение

Вывод

Предисловие

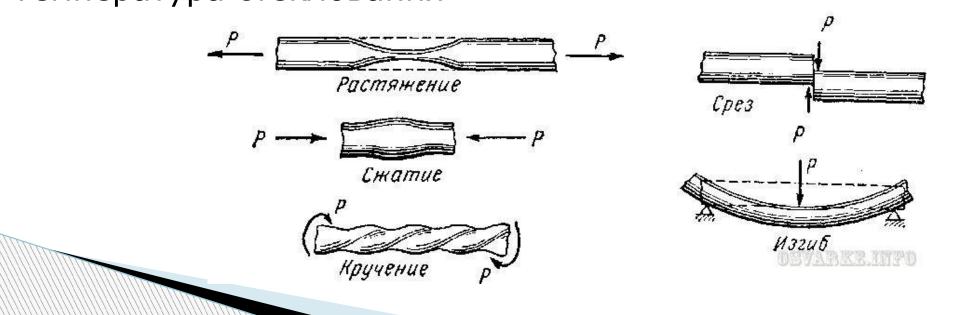
- Чтобы что-то изучить, нужно, чтобы это что-то было.
- В данном процессе буду использовать в основном материалы с ЭБС Лань, Подтверждённых ГОСТ источников ,сайтов производителей приборов ДМА и производителей готовой продукции

Сформулирую вопросы к проблеме

- 1. Анализ и диагностика свойств обозначается в чём? Какие свойства больше интересуют в анализе?
- 2. Что такое ДМА на практике?
- 3. Какие исследуют свойства для использования на практике?
- □ 4. Практическое применение где?

Основные методы термического анализа

	-
Метод	Измеряемый параметр
Дифференциальный термический	температура
анализ (ДТА)	34F0. 504034*
Дифференциальная сканирующая	теплота, теплоемкость
калориметрия (ДСК)	79
Термомеханический анализ (ТМА)	линейный размер, деформация
Дилатометрия	объем
Динамический механический анализ	упругость, коэффициент
(ДМА)	механических потерь
Диэлектрический термический	диэлектрическая проницаемость,
анализ (ДЭТА)	коэффициент диэлектрических
	потерь
Термогравиметрический анализ	масса
(ΤΓΑ)	MID
Анализ выделяемых газов	газообразные продукты разложения
Термооптический анализ (ТОА)	оптические свойства


1. Нас интересует ДМА

Вводные данные

- Термический анализ
 - <u>полимеров</u> совокупность методов, изучающих изменение свойств материалов при изменении температуры.
- Термомеханика полимеров раздел механики полимеров, предмето м которого является изучение механического поведения материала в условиях заданного скоростного, временного или частотного режимов температурносилового воздействия в области линейной вязко-упругости и неразрушающих деформаций.
- □ Фазовые превращения полимеров совокупность фазовых переходов первого рода из кристаллического состояния в аморфное и обратно (плавление и кристаллизация), а также полиморфных переходов из одной кристаллохимической модификации в другую.

ГОСТ Р 56800-2015 КОМПОЗИТЫ ПОЛИМЕРНЫЕ. ОПРЕДЕЛЕНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ ПРИ РАСТЯЖЕНИИ НЕАРМИРОВАННЫХ И АРМИРОВАННЫХ МАТЕРИАЛОВ

ГОСТ Р 56753-2015.(ИСО 6721-11:2012)
Пластмассы. ОПРЕДЕЛЕНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ
ПРИ ДИНАМИЧЕСКОМ НАГРУЖЕНИИ. Часть 11
Температура стеклования

- □ С помощью ДМА измеряют жесткость и амортизацию, а для их выражения используют модуль упругости и угол потерь соответственно. Поскольку мы воздействуем на образец синусоидальной нагрузкой, то модуль накопления будет компонентом, находящимся с этой волной в фазе, а модуль потерь будет компонентом, находящимся в противофазе (см. Рисунок 2). Модуль накопления, как правило, обозначают Е' либо G'.
- Эта величина выступает в качестве меры эластичного поведения образца.
 Отношение модуля накопления к модулю потерь обозначают tg δ и называют коэффициентом амортизации или углом потерь. Эта величина показывает рассеяние энергии материалами.

Схема привода DMA 8000

Прибор динамического механического анализа (ДМА)
 применяется для исследований зависимости механических и вязкоупругих свойств материалов от температуры,
 времени и частоты при воздействии периодических

25.00°C

нагрузок.

отображает текущее смещение при установке держателя образца; контролирует синусоидальность функции смещения.

Технология ДМА — идеальное решение в случаях, когда требуется с максимальной точностью определить свойства материала в широком диапазоне жесткости и (или) частоты колебаний. Кроме того, метод ДМА чрезвычайно универсален. Он позволяет исследовать материалы в условиях


контролируемой влажности или даже при

погружении их в жидкость.

Прибор DMA 1 МЕТТЛЕР ТОЛЕДО

4.ПРИМЕНЕНИЕ И СВОЙСТВА

ПОЛИМЕРОВ

Коррозионные свойства строительных пластмасс

□ Современные достижения науки и техники в области высокомолекулярных соединений позволяют решать задачи получения конструкционных полимерных материалов с заданными свойствами и устранять некоторые недостатки, которые прежде ограничивали широкое применение полимерных материалов в технике и строительстве. К числу этих недостатков относятся: окисляемость при действии агрессивных сред, содержащих активный кислород; ограниченный температурный интервал использования, в особенности в области повышенных температур; низкая теплопроводность; горючесть, недостаточно высокая механическая прочность и относительно небольшая долговечность.

Плиты из экструдированного пенополистирола URSA XPS обладают одним из самых низких коэффициентов теплопроводности среди широко применяемых в строительстве утеплителей. В состав сырья утеплителя игѕа хрѕ (урса) входят антипирены, которые снижают горючесть, уменьшая доступ кислорода во время прямого воздействия огня.

Экструзионный (экструдированный) пенополистирол — синтетический материал для теплоизоляции, разработанный американской строительной компанией в 50-е годы XX века. Изготавливается с применением технологии вспенивания, в составе используются полимерные композиции. Материал продавливается через специальную форму и соединяется в цельный элемент.

История появления НРГ панелей

High Pressure Laminate используется с 1913 года. Первопроходцами стали два инженера из Соединенных Штатов (А. Фабер и Даниель Дж. ОКоннор). В процессе исследований они пришди к выводу, что минеральная слюда отлично походит для сойбыния электрических плат и может применяться в промышленности.

С 1930 года новый тип панелей перешел в строительную сферу, где активно используется при строительстве лайнеров. Кроме того, HPL панель подходит для обшивки воздушных суден и поездов.

С начала 70-х годов XX века HPL панели активно используются при отделке фасадов зданий. Они имеют толщину от 0,6 до 1,0 см и с двух сторон покрыты ламинатом. Строительный материал легко клеился на все виды оснований и был отнесен к категории самонесущих.

Они подходят для внутренней отделки вагонов, фасадов зданий, для создания уличной мебели, дверей при обшивке в разных объектах.

(обънно пинони и двужеренний дем это могут быть пие RAL, интурилений и бумита с фотопечи фольта и пр.)

ядро

фольтираттный митериал, это для реалитных пе неоничению пенесей палитных пенесей прифеступати с полионизмен, полистирал Полимерные материалы, применяемые в качестве конструкционных материалов или в виде обкладок, композиций, лаков, изготавливаются на основе синтетических полимеров с добавлением к ним различных веществ. Эти добавки вводятся в различных количествах, и каждая придает получаемому материалу те или иные свойства или влияет на технологию изготовления излелий из него.

 Полимеры подвергаются термоокислительной деструкции как в ходе их переработки в изделия, так и в процессе эксплуатации изделий.

Одним из важных факторов, определяющих
термостойкость полимера, как и
химическую устойчивость вообще, является
энергия связи между атомами в главной
цепи

Пазветвленные полимеры менее	
термостойки, чем неразветвленные.	

- Полиэтилен более термостоек, чем полипропилен и полиизобутилен, содержащие метильные группы.
- При замещении атомов водорода на атомы хлора или фтора, наблюдается эффект существенного повышения термостойкости. Термостойкость полиэтилена равна 60-75° С, фторопласта-3 230°С, фторопласта-4 350°С.

	Связь	Энергия связи
	C-C	83
1	C-O	79
	C-Si	57
	C-N	66

Ссылки

- 1. Аржаков, М. С. Химия и физика полимеров. Краткий словарь: учебное пособие / М. С. Аржаков. Санкт-Петербург: Лань, 2020. 344 с. ISBN 978-5-8114-4047-4. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/130153 (дата обращения: 04.02.2022). Режим доступа: для авториз. пользователей.
- 2. Коррозионная стойкость полимеров: https://present5.com/download/presentacia.php?id=569447
- 3. Экструдированный пенополистирол: https://ropoд-мичуринск.
 https://ropoд-мичуринск.
 https://ropoд-мичуринск.
 https://ropoд-мичуринск.
 https://ropoд-мичуринск.
 https://ropog-muvypuhck.
 https://ropog-muvypuhck.
 https://ropog-muvypuhck.
 https://ropog-muvypuhck.
 https://ropog-muvypuhck.
 https://ropog-muvypuhck.
 https://ropog-muvypuhck.
 https://ropog-muvypuhck.
 <a h
- 4. Полимеры : https://ppt-online.org/36272
- 5. HPL панель, где используется, виды, технология производства: https://a-dveri.com.ua/chto-takoe-hpl-panel/
- 6. Особенности проведения испытания на растяжение металлов: https://stroi-archive.ru/novosti/26845-osobennosti-provedeniya-ispytaniya-na-rastyazhenie-metallov.html
- 7. ГОСТ 15873-70* «Пластмассы ячеистые эластичные. Метод испытания на растяжение»: https://ohranatruda.ru/ot_biblio/norma/238842/
- 8. ГОСТ Р 56753-2015(ИСО 6721-11:2012). Пластмассы. ОПРЕДЕЛЕНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ ПРИ ДИНАМИЧЕСКОМ НАГРУЖЕНИИ. Часть 11. Температура стеклования https://docs.cntd.ru/document/1200127775
- 9. Динамический механический анализ: http://www.scheltec.ru/media/uploads/dma_guide.pdf
- 10. ДМА прибор: https://www.mt.com/ru/ru/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/DMA.html?cmp=sea __06111938&SE=Yandex&Campaign=MT_ANA-TA_RU_RU&Adgroup=DMA&bookedkeyword=динамический __0720механический%20анализ%20полимеров&matchtype=Yandex-not_available&adtext=11512663767&placeme nt=none&network=search&kclid=bc00eae7-359f-4c6e-8349-aa2c818f73bb&vclid=15584129653398044671