1.12 Баланс энергий в скважинах при подъеме жидкостей

Дисциплина «Технологии эксплуатации газовых и нефтяных скважин»

<u>Физические основы подъема жидкости в стволе скважины</u>

- 1. Приток жидкости из пласта в скважину происходит только под действием перепада давления между P_{nn} и P_{3a6}
- 2. Подъем пластовой нефти всегда сопровождается выделением из нефти газа т.к. *P < Phac*.
- 3. Если в стволе скважины свободного газа нет ($P_y > P_{hac}$), то процесс подъема называется артезианским фонтанированием.
- 4. Движение ГЖС в стволе скважины гораздо сложнее движения жидкостей соответственно законы движения ГЖС также более сложные.
- 5. Подъем ГЖС происходит под действием пластовой энергии в виде напора жидкости или газа

$$\boldsymbol{E}_{\Pi \Pi} = \boldsymbol{E}_{\mathcal{H}} + \boldsymbol{E}_{\mathcal{E}'}$$

где: $\boldsymbol{E_{nn}}$ – энергия пласта, $\boldsymbol{E_{\pi}}$ – энергия жидкости, $\boldsymbol{E_{\epsilon}}$ – энергия газа.

- 6. Приток жидкости (газа) из пласта сопровождается преодолением дополнительных сопротивлений на трение в ПЗП ($\boldsymbol{E_1}$), стволе скважины ($\boldsymbol{E_2}$)и на местные сопротивления оборудования устья ($\boldsymbol{E_3}$).
- 7. При недостатке пластовой энергии для подъема жидкости с

- 8. С учетом всех перечисленных видов энергий уравнение БАЛАНСА ЭНЕРГИЙ в стволе скважины будет:
 - $E_{\Pi \Pi} + E_{\Pi O B} = E_1 + E_2 + E_3$ или $E_{ж} + E_{\Gamma} + E_{\Pi O B} = E_1 + E_2 + E_3$. Где $\pmb{E_{nos}}$ может быть в виде механической энергии (ШСНУ), электрической энергии (УЭЦН, УЭДН, УЭВН), энергии сжатого газа (ГЛ)и др.
- 9. Отдельные виды энергии могут быть выражены, как:

$$E_{\infty} = \frac{10^{3} \cdot (P_{3a6} - P_{0})}{\rho},$$
 Дж $E_{z} = G_{0} \cdot P_{0} \cdot \ln \frac{P_{3a6}}{P_{0}},$ Дж

- 9. Уравнение баланса энергий в скважинах применяется для классификации способов эксплуатации добывающих скважин. Различают:
 - фонтанные скважины (*E_{пов}=0*);
 - механизированные ($E_{nos}>0$), среди которых **насосные** (ШСН, ВН, ДН, СН и др.), компрессорные (ГЛ) и др.
- 11. Коэффициент полезного действия скважины определяется, как $\eta = {}^{\rm E_{\pi o \pi}}/_{\rm E_{aarn}}$,

где E_{non} и E_{samp} — соответственно полезная энергия для подъема ЖГС и затраченная энергия.