
Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Data Representation and Modeling

Difficulty level:
basic

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Thinking More Deeply about Data and
Computation
We’ve seen:

• semi-structured HTML and unstructured text,
represented using tables to be used for
visualization and learning

•manipulating tabular data

• projection (subsetting fields), selection (choosing
rows meeting predicates), loc (extract or update cell),
apply (compute function over each row/col/cell)

• linking tabular data

• merge/join, outerjoin, and using string similarity to
join

Now let’s dive into more detail on design:

• How do we encode data? What are the
implications?

2

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

A First Question:
What Are We Trying to Capture?

“Structured data should capture the semantics of the data”

What do we mean by “data semantics”?

This is a topic that has preoccupied philosophers since at least
Aristotle and Plato

… and computer scientists for most of the lifetime of the field!

3

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Part of the Goal:
Modeling Concepts and Instances

The famous example from logic and philosophy,
attributed to Aristotle:

• All men are mortal.

• Socrates is a man.

• Therefore, Socrates is mortal.

The premise: we have concepts which are classes
of things, and instances of those concepts

• Properties of the concepts appear in the instances

• Instances relate to other instances

Data design is about trying to codify the above!
4

"Aristotle" by maha-online is licensed under CC BY-SA 2.0

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Some Starting Points
We model knowledge using notions dating back to ancient Greece:

• Classes, concepts, or sets of entities – e.g., people

• Instances of those classes – e.g., Socrates, Aristotle, Plato

• Named relationships between classes – e.g., people have teachers who are other
people (thus Aristotle has a teacher, namely Plato)

• Classes may also have properties, e.g., people have names or are mortal

There are different, equivalent ways of looking at these!

• Using logic – “knowledge representation,” a key idea in AI

• Using knowledge graphs – named relationships between classes, subclasses,
instances, properties

• Using entity-relationship modeling – a special case of knowledge graphs

• These can all be used to inform our design of dataframes, hierarchical data, etc. 5

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Modeling Classes, Instances, Properties
Using Logical Predicates

We can use logical assertions to describe everything.

Classes: named, categorized collections of items
“All people are mortal” : Mortal(person).

Classes have specializations or subclasses:
“Men are people” : Subclass(man, person).

Classes have instances:
“Aristotle is a man” : Instance(Aristotle, man)

And we infer predicates from class to subclass, or class to
instance, using rules:

Mortal(x) ^ Subclass(y, x) 🡪 Mortal(y)

Mortal(x) ^ Instance(y, x) 🡪 Mortal(x)

Mortal(person) ^ Subclass(man, person) 🡪 Mortal(man)

Mortal(man) ^ Instance(Aristotle, man) 🡪 Mortal(Aristotle)
6

"Aristotle" by maha-online is licensed under CC BY-SA 2.0

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

We Can Instead Think of this
As Links between Classes + Instances

7

Person

Adult

Man

Aristotle

Life
Stage

instanceOf

subclassOf

subclassOf
subclassOf

Plato Socrates

instanceOf

instanceOf

hasTeacher hasTeacher

…

…

Mortal

subclassOf

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

We Can Instead Think of this
As Links between Classes + Instances

8

Person

Adult

Man

Aristotle

Life
Stage

instanceOf

subclassOf

subclassOf
subclassOf

Plato Socrates

instanceOf

instanceOf

hasTeacher hasTeacher

…

…

Mortal

subclassOf

Here, to determine if Aristotle is Mortal, we
follow links in the graph (instanceOf,

subclassOf) to see if we can find Mortal.

Google & many other services use
Knowledge graphs, such as Freebase and

DBpedia

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Entity-Relationship Graphs Model
Classes as Named Sets of Linked Instances

9

Person

Adult

Man

Life
Stage

subclassOf

subclassOf
subclassOf

ID Name Birth Death

1234 Aristotle 384 BC 322 BC

1233 Plato 428 BC 348 BC

1232 Socrates 470 BC 399 BC

hasTeachers
(list)

Birth

Death

Man is an entity set
with many men, who
are also people

ID
Name

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Entity-Relationship Graphs: A Syntax for
Entities, Properties, Relationships

10

Person

Adult

Man

Life
Stage

ID
Name

Birth

Death

Has
Teacher

“Is a”:
subclass inherits all properties of superclass
superclass includes all members of subclasses

Is
a

Is
aIs

a

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Entities and Relationships
Correspond to Relationships or Dataframes!

Entity set: represents all of the entities of a type, and
their properties

• Person: ID, name, birth, death

• Man: inherits the same fields, possibly adds new ones
(not shown)

Relationship set: represents a link between people

•HasTeacher(teacher: ID of Person, student: ID of Person)

11

Person

Has
Teacher

Man

ID Name Birth Death

1234 Aristotle 384 BC 322 BC

1233 Plato 428 BC 348 BC

1232 Socrates 470 BC 399 BC

Person

Teacher Student

1233 1234

1232 1233

HasTeacher
(Also: Man)

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The Tables Let Us Encode a Graph
within the Data!

12

ID Name Birth Death

1234 Aristotle 384 BC 322 BC

1233 Plato 428 BC 348 BC

1232 Socrates 470 BC 399 BC

Person

Teacher Student

1233 1234

1232 1233

HasTeacher

Aristotle

Plato

Socrates

teacher

teacherstudent

student

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The Tables Let Us Encode a Graph
within the Data!

13

ID Name Birth Death

1234 Aristotle 384 BC 322 BC

1233 Plato 428 BC 348 BC

1232 Socrates 470 BC 399 BC

Person

Teacher Student

1233 1234

1232 1233

HasTeacher

Aristotle

Plato

Socrates

teacher

teacherstudent

student

In-Class Exercise:
Express using dataframe
operations:
“Who is the teacher of Aristotle’s
teacher?”
“Show the entire tree of people
taught by Socrates”?

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ER is a General Model:
A Graph of Entities & Relationships

14Vyas et al, BMC Genomics 2009, A proposed syntax for Minimotif Semantics,
version 1

ID

sequence

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

From the Basics of Entity-Relationship
Diagrams to General Data(base) Design

Deciding on the entities, relationships, and constraints is part of
database design

• There are ways to do this to minimize the errors in the database,
and make it easiest to keep consistent

For this class: we’ll assume we do simple E-R diagrams with
properties

… and that each node becomes a Dataframe

15

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Considering Non-“Flat” Data

16

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

A Common Point of Confusion

•“Relational data can only capture flat relationships”

•Not true: it represents graphs, which can be traversed by
queries!

… Though it might be more convenient to represent certain data
structures!

17

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Hierarchy vs Relations
(“NoSQL” vs “SQL”)

Sometimes it’s convenient to take data we could codify as a graph:

And instead save it as a tree or forest:

18

Person owns Cellphone

[{‘person’: {‘name’: ‘jai’, phones: [{‘mfr’: ‘Apple’, ‘model’: …},
 {‘mfr’: ‘Samsung’, ‘model’: …}},

 {‘person’: {‘name’: ‘kai’, phones: [{‘mfr’: ‘Apple’, ‘model’: …}]}]

This is what NoSQL databases do!

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

NoSQL
“Not-only SQL”

Typically store nested objects, or possibly binary objects, by IDs or keys
Note that a nested object can be captured in relations, via multiple tables!

Some well-known NoSQL systems:

• MongoDB: stores JSON, i.e., lists and dictionaries

• Google Bigtable: stores tuples with irregular properties

• Amazon S3: stores binary files by key

Major differences from SQL databases:

• Querying is often much simpler, e.g. they often don’t do joins!

• They support limited notions of consistency when you update

19

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Recap: Basic Concepts
Knowledge is typically represented as concepts or classes, which can
be generally thought of as corresponding to tables

• But there is also a notion of subclassing (inheriting fields)

• And of instances (rows in the tables)

Knowledge representation often describes these relationships as
constraints
We can capture knowledge using graphs with nodes (entity sets,
concepts) and edges (relationship sets)

• Entity-relationship diagrams show this

• Entity sets and relationship sets can both become tables!

• Graphs + queries can be used to capture any kind of data and relationships (not always
conveniently)

NoSQL systems support hierarchy, which “pivots” the graph into a tree
with a root

20

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Let’s Work on Data Modeling,
Given a Real Dataset!

1. Extracted data from LinkedIn

•~3M people, stored as a ~9GB list of lines made up of JSON

•JSON is nested dictionaries and lists – i.e., NoSQL-style !

•We’ll focus on how to parse and store the “slightly hierarchical” data

2. Then we’ll work out an example with very hierarchical data – HTML

21

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

22

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Parsing Even Not-So-Big Data
Is Painfully Slow!

23

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Can We Do Better?

Maybe save the data in a way that doesn’t require parsing of strings?

24

https://cloud.mongodb.com

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

MongoDB NoSQL DBMS
Lets Us Store + Fetch Hierarchical Data

25

client =
MongoClient('mongodb+srv://cis545:1course4all@cluster0-cy1yu.mongodb.
net/test?retryWrites=true&w=majority')

linkedin_db = client['linkedin']
linked_in = open('linkedin.json')

for line in linked_in:
 person = json.loads(line)
 linkedin_db.posts.insert_one(person)

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Data in MongoDB

26

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Finding Things,
in a Dataframe vs in MongoDB

def find_skills_in_list(skill):

 for post in list_for_comparison:

 if 'skills' in post:

 skills = post['skills']

 for this_skill in skills:

 if this_skill == skill:

 return post

 return None

def find_skills_in_mongodb(skill):

 return linkedin_db.posts.find_one({'skills': skill})

27

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

How Do We Convert Hierarchical
Data to Dataframes?

Hierarchical data
doesn’t work well
for visualization
or machine
learning

28

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The Basic Idea: Nesting
Becomes Links (“Key/Foreign Key”)

29

_id Overview_html locality industry …

in-00001 <dl id=… Antwerp Area Pharmaceu

person org title start desc

in-00001 Columbia Assoc… August Wor…

in-00001 … … … …

people

experience

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Reassembling through (Outer) Joins

30

pd.read_sql_query("select _id, \'[\' + group_concat(org) + \']\'" +\
 " from people left join experience on _id=person "+\
 " group by _id", conn)

pd.read_sql_query("select _id, org" +\
 " from people left join experience on _id=person ",\
 conn)

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Views

Sometimes we use a query enough that we want to give its results a name, and
make it essentially a table (which we then use in other queries!)

31

conn.execute('begin transaction')
conn.execute('drop view if exists people_experience')
conn.execute("create view people_experience as " +\
 " select _id, group_concat(org) as experience " +\
 " from people left join experience on _id=person group by _id")
conn.execute('commit')

pd.read_sql_query('select * from people_experience', conn)

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Occasional Considerations:
Access and Consistency

Sometimes we may need to allow for failures and “undo”…

• We saw “BEGIN TRANSACTION … COMMIT”

• There is also “ROLLBACK”

Relational DBMS typically provide atomic transactions for this; most
NoSQL DBMSs don’t

A second consideration when the data is shared: what happens when
multiple users are editing and querying at the same time?

•Concurrency control (how do we handle concurrent updates) and
consistency (when do I see changes)

32

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Summary of Data Modeling

We have a large hierarchical dataset for LinkedIn
It takes a long time to load / parse

We can load it into MongoDB, which stores it ~directly
Can retrieve by patterns, a bit like XPath

We can split it into dataframes or SQL tables, and we can reassemble
by joins

Grouping with concatenation can rebuild our sets, if we really want
And views let us give a name to the reassembled results

If data isn’t static, we should consider transactions and concurrency

33

