
АЛКИНЫ

ЦЕЛЬ:

Изучить:

- 1. Понятие о непредельных углеводородах.
- 2. Характеристику тройной связи.
- 3.Изомерию и номенклатуру алкинов.
- 4. Физические свойства.
- 5. Получение алкинов.
- 6.Свойства алкинов.
- 7. Применение алкинов.

ПОНЯТИЕ ОБ АЛКИНАХ

• **Алкины** — углеводороды, содержащие в молекуле **одну тройную связь** между атомами углерода, а качественный и количественный состав выражается общей формулой

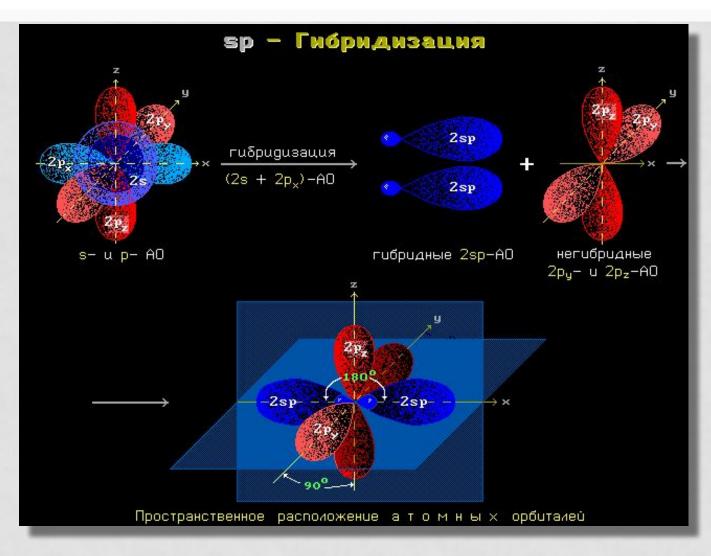
$$C_n H_{2n-2}$$
, где $n \ge 2$.

ПОЧЕМУ???

• Алкины относятся к непредельным углеводородам, так как их молекулы содержат меньшее число атомов водорода, чем насыщенные.

ХАРАКТЕРИСТИКА ТРОЙНОЙ СВЯЗИ

• Вид гибридизации – **Sp**


Валентный угол — 180

• Длина связи C = C - 0,12 нм

• Строение — линейное

- Вид связи ковалентная полярная
- По типу перекрывания $\,\delta\,$ и 2 π

CXEMA ОБРАЗОВАНИЯ SP-ГИБРИДНЫХ ОРБИТАЛЕЙ

ГОМОЛОГИЧЕСКИИ РЯД АЛКИНОВ

Этин

 C_2H_2 C_3H_4

Пропин

C₄H₆

Бутин

C₅H₈

Пентин

C6H10

Гексин

C7H12

Гептин

Что такое гомологический

ряд?

Чем отличаются названия

АЛКИНОВ от названия

АЛКЕНОВ?

выполните упражнение:

• Задание «Третий лишний». Докажите, что выбранный вами «лишний» углеводород отличается от других:

1.
$$C_4H_6$$
 C_5H_1 C_3H
2. C_6H_{12} 2C_3H 8C_4H
3. C_7H_{12} 4C_4H_1 8C_5H_1

Изомерия алкинов

Структурная изомерия

1. Изомерия положения тройной связи (начиная с С, Н,):

$$CH \equiv C - CH_2 - CH_3$$

$$CH_3 - C \equiv C - CH_3$$

2. Изомерия углеродного скелета (начиная с C_5H_8):

3. Межклассовая изомерия с алкадиенами и циклоалкенами, (начиная с С₄H₈):

$$CH = CH$$
 $CH = CH_2$ $CH_2 = CH_2 - CH_2$ $CH_2 = CH_2 - CH_2$ $CH_2 - CH_2$ $CH_2 - CH_2$ $CH_2 - CH_2$ $CH_2 - CH_2$

выполните упражнение:

• Задание :дайте названия углеводородам и назовите виды изомерии.

$$A.CH3 - CH2 - CH2 - C \equiv CH$$

C.
$$CH_3 - C \equiv C - CH_2 - CH_3$$

ФИЗИЧЕСКИЕ СВОЙСТВА

- 1. Температуры кипения и плавления алкинов, так же как и алкенов, закономерно повышаются при увеличении молекулярной массы соединений.
- 2. Алкины имеют специфический запах. Они лучше растворяются в воде, чем алканы и алкены.

Получение алкинов

KIN

Ацетилен получают в промышленности двумя

способами:

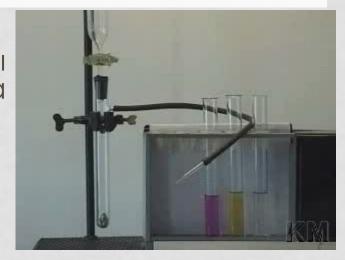
1. Термический крекинг метана:

1836 г. Впервые получено английским химиком **Г. Дэви**

$$2CH_4 \xrightarrow{\text{эл ток}} CH \equiv CH + 3H_2$$
 (метановый способ)

1860 г. Название веществу дал французский химик М. Бертло **2C** + **H**₂ → **CH** ≡ **CH**

2. Гидролиз карбида кальция:


$$CaC_2 + 2H_2O \longrightarrow C_2H_2 + Ca(OH)_2$$

ХИМИЧЕСКИЕ СВОЙСТВА АЛКИНОВ

• Химические свойства ацетилена и его гомологов в основном определяются наличием в их молекулах **тройной связи**. Наиболее характерны для алкинов реакции **присоединения**.

РЕАКЦИИ ПРИСОЕДИНЕНИЯ

- 1. Галогенирование Обесцвечивание бромной воды является качественной реакцией на все непредельные углеводороды
- 2. Гидрогалогенирование.
- 3. Гидрирование.
- 4. Гидратация.

ОКИСЛЕНИЕ

Ацетилен и его гомологи окисляются перманганатом калия с расщеплением тройной связи и образованием карбоновых кислот:

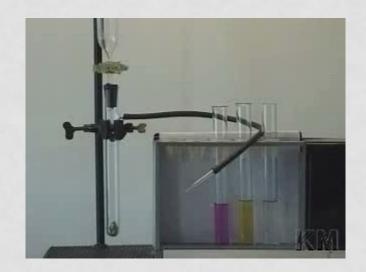
$$R-C\equiv C-R'+3[O]+H_2O\longrightarrow R-COOH+R'-COOH$$

Алкины обесцвечивают раствор KMnO₄, что используется для их качественного определения.

ГОРЕНИЕ АЦЕТИЛЕНА

• При сгорании (полном окислении) ацетилена выделяется большое количества тепла:

$$HC \equiv CH + 2O_2 \longrightarrow 2CO_2 + H_2O + Q$$



РЕАКЦИИ ЗАМЕЩЕНИЯ

При взаимодействии ацетилена (или **R−C≡C−H**) с аммиачными растворами оксида серебра выпадают осадки нерастворимых ацетиленидов:

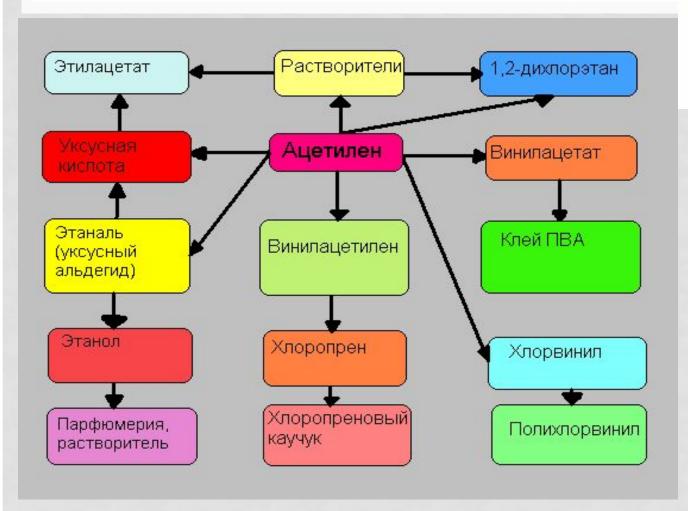
 $HC \equiv CH + 2[Ag(NH_3)_2]OH \longrightarrow AgC \equiv CAg \downarrow + 4NH_3 + 2H_2O$

Качественная реакция на концевую тройную связь

РЕАКЦИЯ ПОЛИМЕРИЗАЦИИ

1. Димеризация под действием водного раствора CuCl и NH4Cl:

$$HC \equiv CH + HC \equiv CH \longrightarrow H_2C = CH - C \equiv CH$$


(винилацетилен)

2. Тримеризация ацетилена над активированным углем приводит к образованию бензола (реакция Зелинского):

C, 600 °C

3НС≡СН — С6Н6 (бензол)

ПРИМЕНЕНИЕ АЛКИНОВ

ДОМАШНЕЕ ЗАДАНИЕ

1. Дано вещество:

2 - диметилпентин-2.

Найдите ошибки.

2. Напишите формулу углеводорода, в молекуле которого два атома углерода находятся в состоянии **sp-гибридизации** и **пять атомов** имеют гибридизацию.

СПАСИБО ЗА РАБОТУ!