Богданова Ирина Викторовна, ГОУ СОШ №617, г. Санкт-Петербург

Молекулярная

Повторительно-обобщающий урок 10 класс

- МКТ идеального газа
- Термодинамика

Физическая теория

пытное основан

- □ Броуновское движение
- □ Диффузия
- □ Испарение тел
- □ Дробление тел
- □ Упругость тел

- Невозможность самопроизвольного сжатия газа
- Невозможность построения вечного двигателя
- Выравнивание температур соприкасающихся тел

Физическая модель

□ Идеальный газ — совокупность материальных точек, не взаимодействующих между собой на расстоянии, испытывающих абсолютно упругие столкновения

□ Термодинамическая система - изолированная система тел, находящаяся в состоянии термодинамического равновесия

Система законов

□ Основное уравнение МКТ

$$p = \frac{1}{3} n m_0 \overline{\upsilon}^2$$

Уравнение состояния идеального газа

$$pV = \frac{m}{M}RT$$

I закон термодинамики:

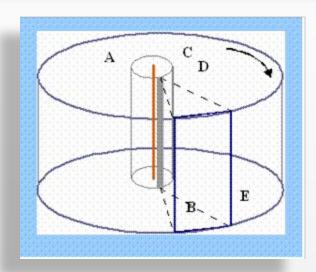
$$Q = \Delta U + A$$

■ II закон термодинамики: в циклически действующем тепловом двигателе невозможно преобразовать всё количество теплоты, полученное от нагревателя, в механическую работу.

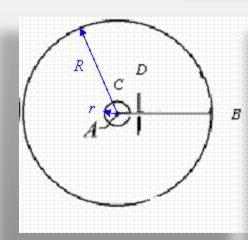
Фундаментальные постоянные

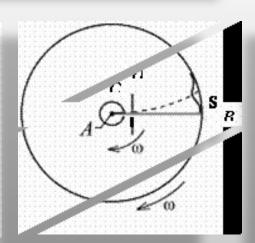
□ Постоянная Авогадро

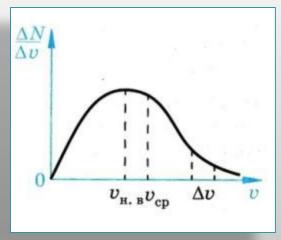
$$N_A = 6,022 \cdot 10^{23} \, \text{моль}^{-1}$$

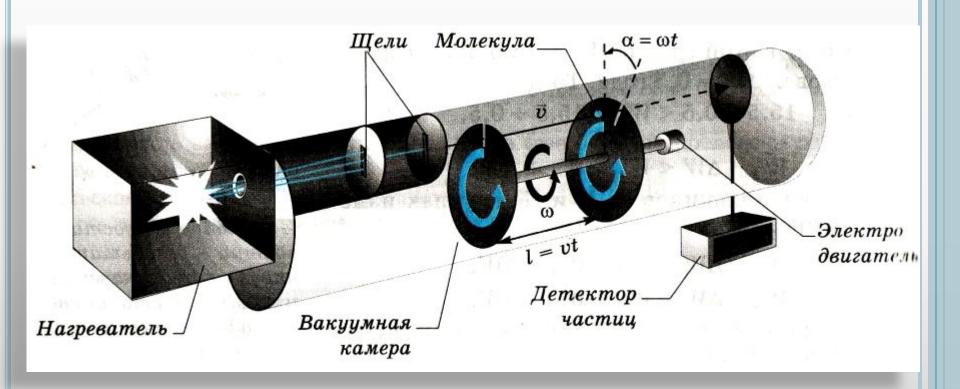

ПостояннаяБольцмана

$$k = 1,38 \cdot 10^{-23} \frac{\cancel{\square} \cancel{\cancel{3}} \cancel{\cancel{K}}}{\cancel{\cancel{K}}}$$




Опыт Штерна

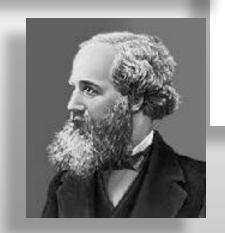




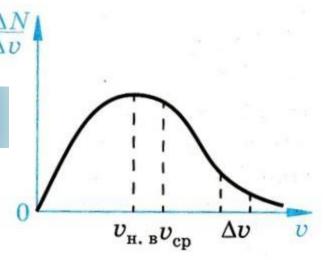
Опыт Ламмерта

Методы описания тепловых явлений

	Статистический метод	Термодинамический метод
Объект описания	Газ – система микрочастиц	Газ – макроскопическая система
Физическая модель	Идеальный газ	Термодинамическая система
Основные величины	Масса молекулы — то Концентрация молекул — п Средняя квадратичная скорость молекул — в Средняя кинетическая энергия молекул — Е Количество вещества — в Молярная масса — М Постоянная Больцмана - к	Масса газа — т Давление — р Объём — V Температура — Т Плотность — р Внутренняя энергия — U Универсальная газовая постоянная - R


Статистический метод

Распределение молекул идеального газа в пространстве


Молекулы идеального газа в отсутствие внешних сил распределены в пространстве павномерно

 $S = k \ln W$

Распределение молекул идеального газа по скоростям

Распределение Максвелла

Связь между основными величинами в статистической механике и термодинамике

$$p = \frac{1}{3}nm_0\overline{\upsilon^2} = \frac{1}{3}\rho\overline{\upsilon^2} = \frac{2}{3}n\overline{E} = nkT$$

$$\upsilon_{cp.\kappa e.} = \sqrt{\overline{\upsilon^2}} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3RT}{M}}$$

$$pV = vRT = \frac{m}{M}RT$$

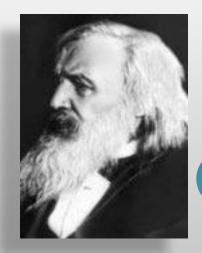
$$U = \frac{i}{2}vRT; \Delta U = \frac{i}{2}vR\Delta T = \frac{i}{2}\Delta(pV)$$

• MKT

- Основные понятия
- Основные положения

Молекулярно – кинетическая теория

- •Изучает: свойства систем, состоящих из большого числа микроскопических частиц, характера их движения и взаимодействия.
- Типичные явления: диффузия, теплопроводность, броуновское движение



Основные положения МКТ

- Все вещества состоят из частиц, между которыми есть промежутки
- Все частицы находятся в непрерывном хаотическом движении, скорость которого зависит от температуры
- Между частицами существуют силы притяжения и силы отталкивания

Применения МКТ:

объяснение и расчёт явлений

теплового **расширения**

броуновского движения

поверхностного натяжения

диффузии

Термодинамика

Что изучает

Свойства макротел и явления, опираясь на общие законы термодинамики в рамках модели «термодинамическая система»

Типичные явления: тепловое равновесие, изменение агрегатного состояния

Термодинамика

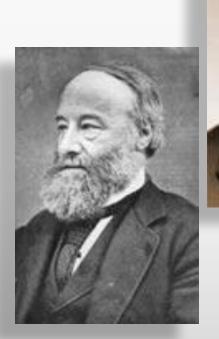
- Средства описания

 - 1 закон термодинамики
 - 2 закон термодинамики
 - Основные понятия
 - Давление, объём, температура, работа и количество теплоты, внутренняя энергия

Кинетическая энергия хаотического движения частиц

Внутренняя энергия

Потенциальная энергия взаимодействия частиц

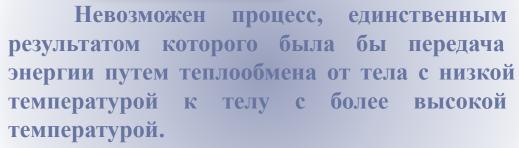

$$U = \frac{i}{2}vRT; \Delta U = \frac{i}{2}vR\Delta T = \frac{i}{2}\Delta(pV)$$

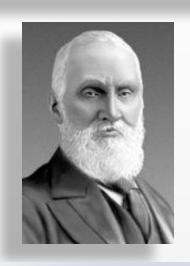
19

• Способы изменения внутренней энергии

- Теплопередача
 - Теплопроводность
 - Конвекция
 - Излучение
- Совершение механической работы
 - Трение
 - Деформация

I закон термодинамики




Важным следствием первого закона термодинамики является утверждение о невозможности создания машины, способной совершать полезную работу без потребления энергии извне и без каких-либо изменений внутри самой машины. Такая гипотетическая машина получила название вечного двигателя (perpetuum mobile) первого рода.

II закон термодинамики

Гипотетическую тепловую машину, в которой мог бы происходить такой процесс, называют «вечным двигателем второго рода».

В циклически действующей тепловой машине невозможен процесс, единственным результатом которого было бы преобразование в механическую работу всего количества теплоты, полученного от единственного теплового резервуара.

• Применсние термецинамики • Энергетика

- Расчёты тепловых процессов
- Объяснение действия теплом их машин

Тепловые двигатели

Название	Изобретатели	Схема	кпд
Паровая машина	Д. Уатт		1%-10%
Двигатель внутреннего сгорания	Н. Отто		20% - 30%
Паровая турбина	Г. Лаваль	2	35% - 45%
Реактивный двигатель	О. фон Браун		40% - 50%

Изменение агрегатных состояний

Фазовый переход	Название процесса	Формула	График
Пар - жидкость	Парообразование ←→ конденсация	Q = r·m r – удельная теплота парообразования (конденсации)	конденсация
Жидкость - твёрдое тело	Плавление ↔ Кристаллизация	$\mathbf{Q} = \lambda \cdot \mathbf{m}$ $\lambda - \mathbf{y}$ дельная теплота плавления (кристаллизации)	плавление

Название теории	Основание теории	Ядро теории	Следствия теории
Молекулярно- кинетическая теория (МКТ)	 Броуновское движение, диффузия, испарение тел, упругость тел и др. Идеальный газ Масса молекулы, средняя кинетическая энергия молекул и др. 	$p = -nm_0 v^2$	Закон Бойля- Мариотта, закон Гей-Люссака, закон Шарля Описание свойств тел в различных агрегатных состояниях
Термодинамика	2. Термодинамическая система 3. Температура, давление, объём, внутренняя энергия.	$Q = \Delta U + A$ В циклически действующей тепловой машине невозможно преобразовать в работ всё количество теплот получаемое от нагревателя	Расчёт тепловых У процессов

Творцы науки

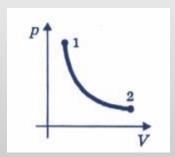
Тест по теме «Молекулярная физика» 1 вариант

- 1. Основанием молекулярно кинетической теории является:
 - А. Опыт Штерна
 - В. Диффузия
 - С. Испарение
 - D. Упругость тел
- 2. Физическая модель, используемая в термодинамике, это:
 - А. Абсолютно твёрдое тело
 - В. Материальная точка
 - С. Термодинамическая система
 - D. Идеальный газ

3. Для описания тепловых явлений в молекулярной физике используются:

- А. Координатный метод
- В. Статистический метод
- С. Термодинамический метод
- D. Метод проб и ошибок

4. Основными понятиями в термодинамике являются:

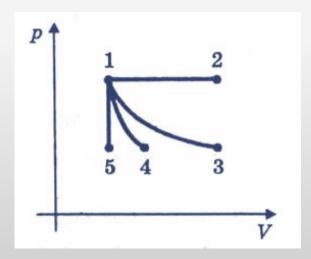

- А. Масса молекулы
- В. Температура
- С. Давление
- Средняя кинетическая энергия молекул

5. Первый закон термодинамики сформулировали:

- А. Д.Максвелл
- В. Д.Джоуль
- С. Р.Майер
- D. Г.Гельмгольц

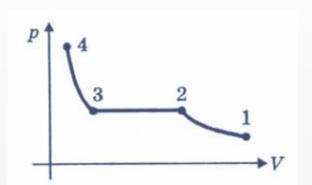
6. Следствием какого закона молекулярнокинетической теории является закон, описывающий данный процесс:

- А. Уравнения состояния идеального газа
- В. Основного уравнения молекулярно-кинетической теории
- С. Ни того, ни другого
- D. И того , и другого



7. Что не относится к ядру теории «Термодинамика»:

- А. Описание цикла Карно
- В. Расчёт адиабатного процесса в двигателе Дизеля
- С. Описание процесса плавления стали в мартеновской печи
- D. Все указанные вопросы


8. При каком процессе работа газа имеет максимальное значение:

- A. 1 -2
- B. 1-3
- C. 1 -4
- D. 1 -5

9. Какой из участков изотермы соответствует процессу конденсации пара:

- A. 1 -2
- B. 2-3
- C. 1-3
- D. 2 -4
- E. 3-4

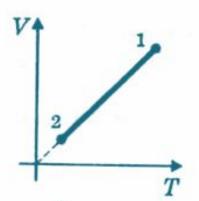
10. Какое из перечисленных свойств характерно только для аморфных тел:

- А. Анизотропность
- В. Существование определённой температуры плавления
- С. Отсутствие определённой температуры плавления
- Низкая теплопроводность

Тест по теме «Молекулярная физика» 2 вариант

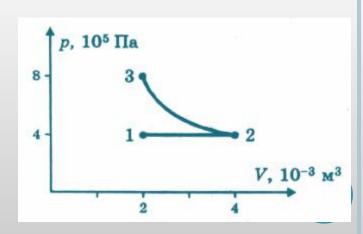
- 1. Следствиями теории «Термодинамика» являются:
 - А. Описание фазовых переходов
 - В. Описание цикла Карно
 - С. Объяснение молекулярного строения тел
 - Создание материалов с заранее известными свойствами
- 2. Физическая модель, используемая в молекулярно-кинетической теории, это:
 - А. Абсолютно твёрдое тело
 - В. Материальная точка
 - С. Термодинамическая система
 - D. Идеальный газ

3. Объектом описания тепловых явлений статистическим методом является:

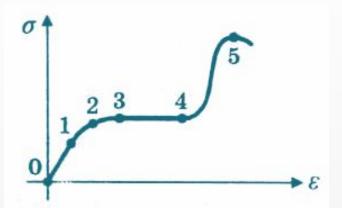

- А. Газ макроскопическая система
- В. Газ микроскопическая система
- С. И то, и другое
- D. Нет правильного ответа

4. Основными понятиями в молекулярно-кинетической теории являются:

- А. Масса молекулы
- В. Внутренняя энергия
- С. Объём газа
- Средняя кинетическая энергия молекул


5. Формулировки II закона термодинамики предложили:

- А. Р.Клаузиус
- В. Д.Джоуль
- С. У. Томсон (Кельвин)
- D. Л. Больцман
- 6. Следствием какого закона молекулярнокинетической теории является закон, описывающий данный процесс:
 - А. Уравнения состояния идеального газа
 - В. Основного уравнения молекулярно-кинетической теории
 - А. Ни того, ни другого
 - В. И того, и другого


- Что не входит в ядро молекулярно-кинетической теории:
 - Законы изопроцессов
 - Объяснение свойств тел в различных агрегатных состояниях В.
 - Уравнение состояния идеального газа
 - Постоянная Больцмана
- Газ переводят в состояние 2 сначала из состояния 1, а потом из состояния 3. Сравнить совершаемые работы:

 - A. $A_{1,2} > A_{3,2}$ B. $A_{1,2} = A_{3,2}$ C. $A_{1,2} < A_{3,2}$

9. Какая точка диаграммы растяжения соответствует пределу прочности:

- A. 1
- **B.** 2
- **C**. 3
- **D.** 4
- **E.** 5

10. Как изменится плотность насыщенного пара, если изотермически уменьшить его объём:

- А. Уменьшится
- В. Увеличится
- С. Не изменится
- D. Вопрос не имеет смысла, так как плотность и объём не зависят друг от друга

Использованные ресурсы:

http://tvsh2004.narod.ru/phis.htm