Петербургский государственный университет путей сообщения Императора Александра I Факультет «Автоматизации и интеллектуальных Кафедра «Информационная работа

Оценка производительности протоколов доступа к ресурсам систем облачных вычислений

Выполнил: студент группы ИСБ-310 Михайлов Г. В. Научный руководитель: начальник отдела по эксплуатации СПД и Т Хвостунов А. Ю.

Санкт-Петербург 2017 г.

Объект исследования:

✓ Протоколы канального уровня семиуровневой модели OSI:

Актуальность:

✓ Протоколы канального уровня получают доступ к среде передачи данных и обеспечивают достоверность передаваемой информации. От правильного выбора протокола доступа будет зависеть качество передаваемых данных

Цель:

- ✓ Оценка протоколов доступа;
- ✔ Сравнение протоколов доступа;

Облачные вычисления

Достоинства:

- а) Доступность и отказоустойчивость; а) необходимость постоянного
- b) Экономичность и эффективность;
- с) Простота;
- d) Гибкость и масштабируемость.

Недостатки:

- а) необходимость постоянного соединения с сетью передачи данных;
- b) низкий уровень безопасности;
- с) зависимость от провайдера.

Канальный уровень передачи данных сетевой модели OSI

Назначение канального уровня заключается в формировании и передаче кадров на физический уровень по разделяемому несколькими парами взаимодействующих устройств каналу связи.

Канальный уровень передачи данных выполняет следующие функции:

- а) получение доступа к среде передачи данных;
- b) выделение границ передаваемого кадра;
- с) аппаратная адресация или адресация канального уровня;
- d) обеспечение достоверности принимаемых данных;
- е) адресация протоколов верхнего уровня.

Протоколы, применяемые в сетях передачи данных СПБ ИВЦ Fast Ethernet

Физический интерфейс	100Base-FX	100Base-TX	100Base-T4
Среда передачи	Оптическое волокно	Витая пара	Витая пара
Максимальная протяжённость сегмента сети (м)	2000	100	100

Формат кадра:

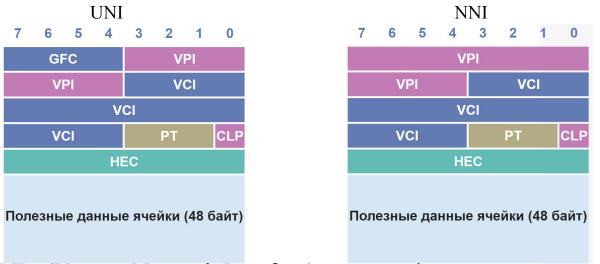
7+1	6	6	2	1	1	1(2)	46-1500	4
SFD	Da	Sa	L	DSAP	SSAP	Control	DATA	FCS

DA (Destination Address) – адрес получателя; SA (Source Address) - адрес отправителя; L – (Length) информация о размере данных; DSAP, SSAP, Control - заголовок LLC (Указатель типа протокола верхнего уровня); DATA - поле данных; FCS (Frame Check Sequence) - проверочная последовательность кадра.

Протоколы, применяемые в сетях передачи данных СПБ ИВЦ HDLC

HDLC применяется на каналах передачи данных стандарта E1. Скорость передачи данных в канале E1 -2 Мбит/с.

Максимальная длина сегмента сети				
Без регенераторов сигнала	С регенераторами сигнала			
4000 (M)	17 000 (м)			


Формат кадра:

1	8	8-16	0 – кратно 8	16	1
FD	address	control	DATA	FCS	FD

FD – границы кадра; address – адрес устройства передачи; control – поле управления; DATA - поле данных; FCS (Frame Check Sequence) - контрольная последовательность, необходимая для обнаружения ошибок;

Протоколы, применяемые в сетях передачи данных СПБ ИВЦ SHDSL

SHDSL - это xDSL-технология, обеспечивающая симметричную дуплексную передачу данных по паре медных проводников.

Максимальная длина сегмента сети				
Без регенераторов	С регенераторами			
сигнала	сигнала			
3500 - 6000 (м)	20 000 (м)			

UNI - (User-to-Network Interface) — интерфейс между конечной станцией и коммутатором;

NNI - (Network-to-Network Interface) — интерфейс между двумя коммутаторами; GFC - (Generic Flow Control) — общее управление потоком; VPI - (Virtual Path Identifier) — идентификатор виртуального пути; VCI - (Virtual circuit identifier) — идентификатор виртуального канала; PT - (Payload Type) — тип данных; CLP - (Cell Loss Priority) — уровень приоритета при потере пакета; HEC - (Header Error Control) — поле контроля ошибок.

Пропускная способность протоколов

Пропускная способность протокола может быть:

- номинальной;
- эффективной.

Номинальной пропускной способностью протокола – это битовая скорость передачи данных, поддерживаемая на интервале передачи одного кадра.

Эффективная пропускная способность протокола – это скорость передачи реальных данных, то есть тех данных, которые инкапсулированы в передаваемые пакеты.

Передача кадров:

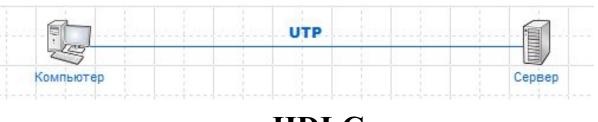
Служебная	DATA	Служебная информация	Гехнологическа я	Служебная
∙ информация →			пауза	- информация →

Размеры кадра и пакета

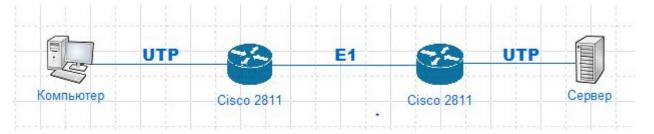
Большой размер передаваемого пакета означает, что передаваемая информация будет делиться на меньшее число частей, следствием чего будет меньшее количество передаваемых пакетов и передаваемых кадров соответственно. Меньше количество передаваемых кадров приведёт к уменьшению размера совокупной передаваемой служебной информации, а значит эффективная пропускная способность увеличится.

Время доступа к среде передачи данных:

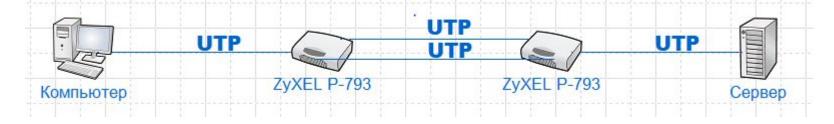
Время доступа к среде складывается из:


- номинального времени доступа;
 - времени ожидания доступа.

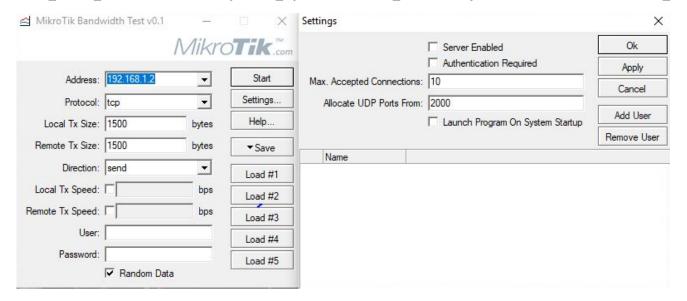
Номинальное время доступа – это время доступа к незагруженной среде передачи данных, когда передающий сетевой узел не конкурирует с другими узлами за соединение с принимающим узлом.


Время ожидания доступа зависит от задержек, возникающих из-за разделения передающей среды между несколькими одновременно работающими сетевыми станциями.

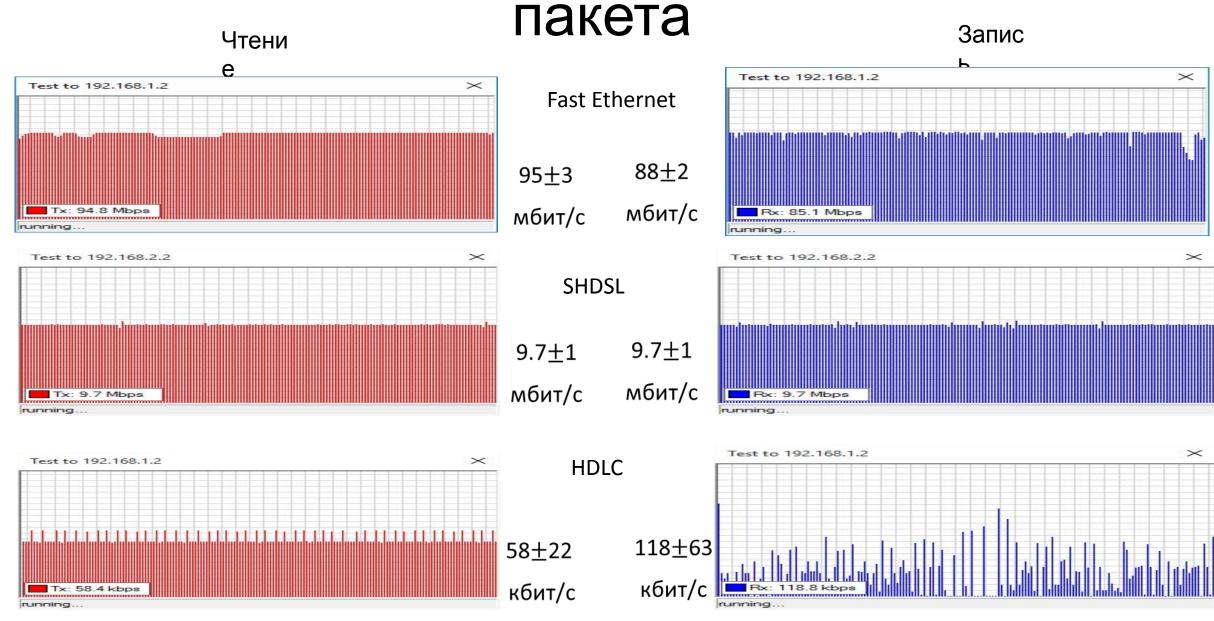
Описание тестового стенда


Fast Ethernet

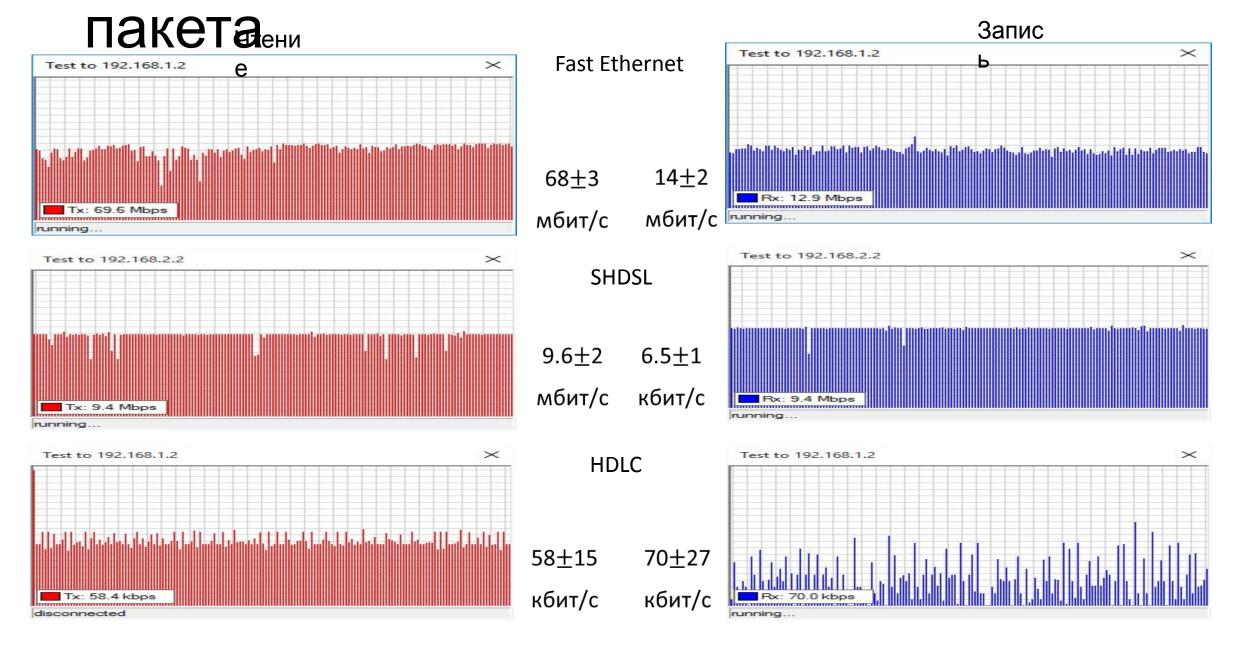
HDLC

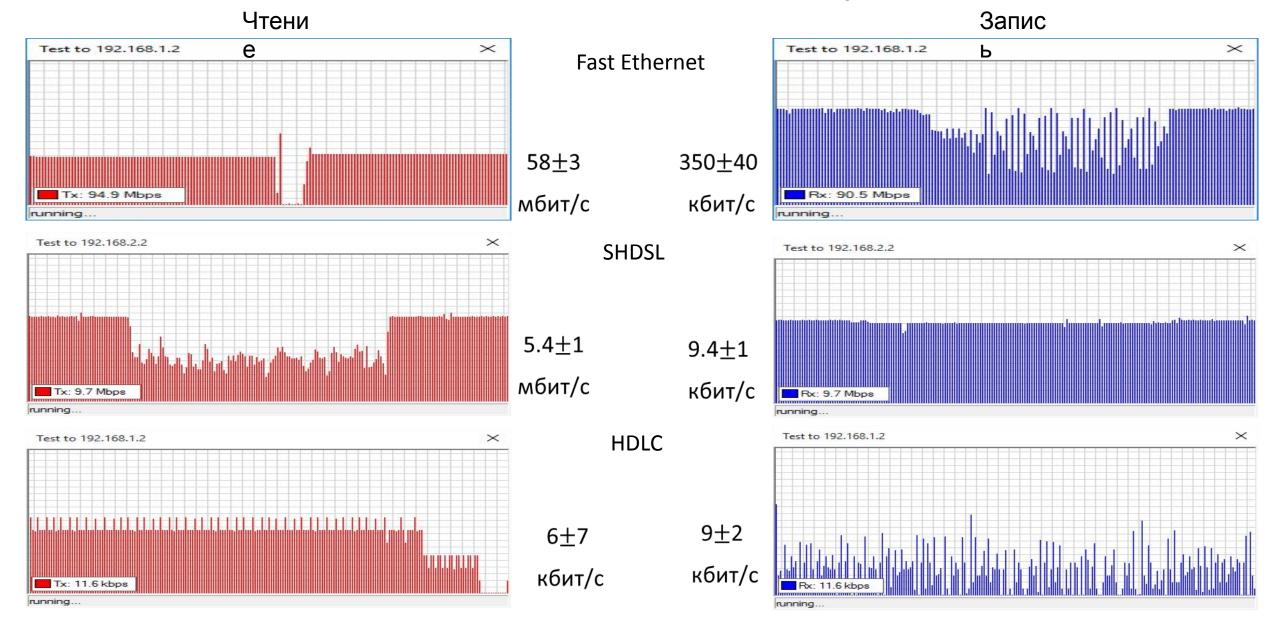


SHDSL



Аппаратные и программные средства тестирования


- Клиент: Intel Core i3-4010 1.7GHz CPU, 4Gb RAM, установлена ОС windows 10;
- Сервер: Intel Core i5-5200 2.2GHz CPU, 8Gb RAM, установлена ОС windows 10;
- Модемы: ZyXEL P-793;
- Маршрутизаторы Cisco 1841, Cisco 2811;
- Программа, эмулирующая работу клиента и сервера Mikrotik bandwidth test v0.1.


Максимальный размер передаваемого

Минимальный размер передаваемого

Передача данных при загруженной среде

Заключени

Охрана труда:

Результаты проведённого исследования не ухудшат условия труда работников

Обоснование экономической эффективности:

Общая стоимость выпускной квалификационной работы, составляет 36848 руб.

В выпускной квалификационной работе были рассмотрены протоколы канального уровня, применяемые на СПБИВЦ. Было проведено сравнительное тестирование протоколов Fast Ethernet, HDLC, SHDSL. Полученные результаты показали, что наиболее эффективным в скорости передачи данных является Fast Ethernet. Однако при использовании протоколов HDLC и SHDSL можно добиться гораздо большей длины сегмента сети.