Тема урока:

Кипение. Удельная теплота парообразования и конденсации

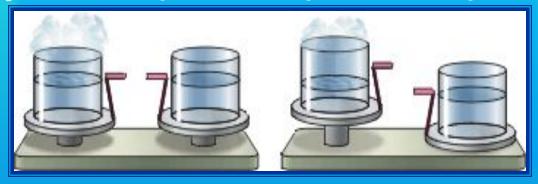
Презентацию подготовила учитель физики

Старкова Евгения Евгеньевна

МОУ Буревестниковская СОШ

Какой процесс

называют


При какой температуре происходит испарение?

Ответьте на

1. Почему вода из тарелки испаряется быстрее, чем из миски?

2. Почему нарушилось равновесие весов?



3. Почему через несколько дней уровень различных жидкостей стал разным?

Кипение

Кипение-это интенсивный переход жидкости в пар, происходящий с образованием пузырьков пара по всему объему жидкости при определенной температуре.

Температуру, при которой жидкость кипит, называется температурой кипения.

Температура кипения некоторых веществ, ⁰С (при нормальном атмосферном давлении)

Водород	-253	Вода	100
Кислород	-183	Ртуть	357
Молоко	100	Свинец	1740
Эфир	35	Медь	2567
Спирт	78	Железо	2750

Температура кипения зависит от давления, оказываемого на свободную поверхность жидкости

При понижении давления температура кипения жидкости уменьшается.

При увеличении давления температура кипения жидкости увеличивается.

Удельная теплота парообразования.

Физическая величина, показывающая, какое количество теплоты необходимо чтобы обратить жидкость массой 1кг в пар без изменения температуры, называется удельной теплотой парообразования.

Удельная теплота парообразования обозначается L ,измеряется в Дж/кг

Удельная теплота парообразования некоторых веществ, ДЖ / кг

(при температуре кипения и нормальном атмосферном

Вода	2,3 * 10 ⁶	Эфир	0,4 * 10 ⁶
Аммиак	1,4 *10 ⁶	Ртуть	0,3 * 10 ⁶
(Жидкий)			
Спирт	0,9 *10 ⁶	Воздух	0,2 * 10 ⁶
		(жидкий)	

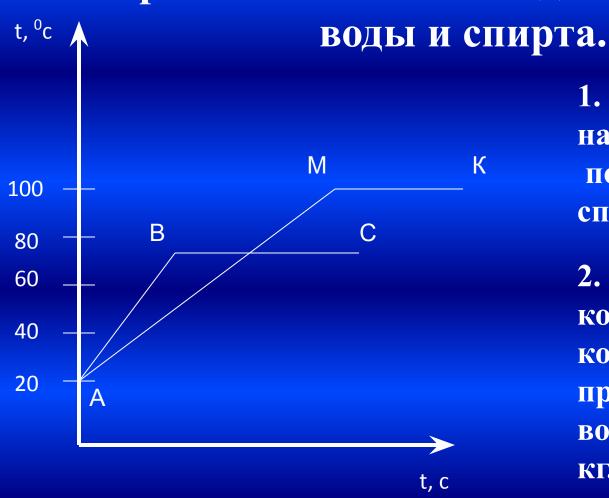
Для превращения воды маской 1 кг в пар при температуре 100 °C требуется 2,3 * 10⁶ Дж энергии.

Конденсируясь, пар отдает то количество энергии, которое пошло на его образование

Расчет количества теплоты, необходимого для превращения жидкости в пар

Чтобы вычислить количество теплоты, необходимое для превращения в пар жидкости любой массы, взятой при температуре кипения, нужно удельную теплоту парообразования умножить на массу

Q=Lm


Q – количество теплоты, ДжL – удельная теплота парообразования, Дж/кг

Количество теплоты, которое выделяет пар, конденсируясь при температуре кипения, определяется по этой же формуле

Заполните

Q	3 *10 ⁶	1,84 * 10 ⁶	4,5*10 ⁷
	Дж	Дж	Дж
L	2,3*10 ⁶	2,3*10 ⁶	2,3 * 10 ⁶
	Дж/кг	Дж/кг	Дж/кг
m	1,3 кг	0,8кг	19 кг

На графиках показаны процессы нагревания и кипения одинаковых масс

- 1. Укажите график нагревания и кипения построенный для спирта
- 2. Рассчитайте количество теплоты, которое поглощается в процессе МК. Массу воды считать равной 5 кг.

Учебник А.В. Перышкин §18, §20 Упр. 10 №3,4