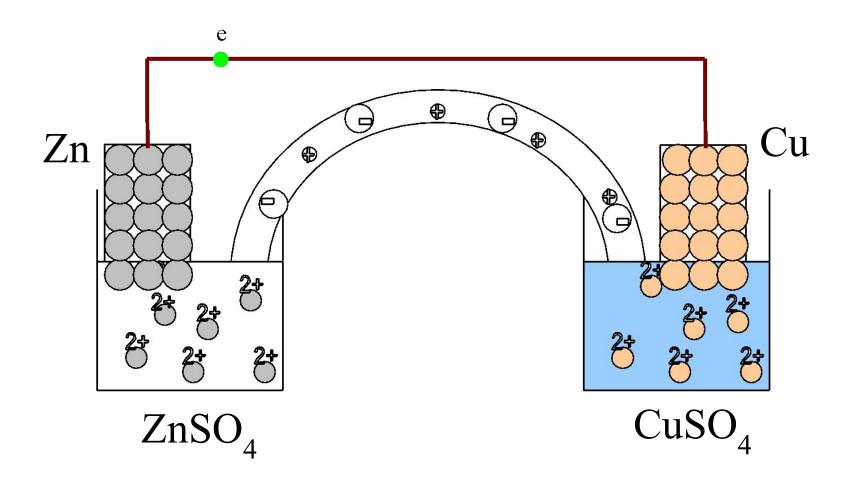

Электродные процессы. Электроды. Потенциометрия.

Электродный процесс

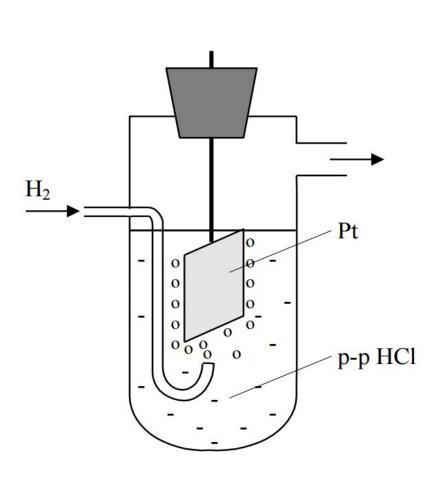

$$Zn^0 = Zn^{2+} + ne^-$$

Гальванический элемент

Гальванический элемент Даниэля – Якоби

• Zn ZnSO4 CuSO4 Cu.

$$Zn - 2\bar{e} \rightarrow Zn^{2+}$$
 – анодное окисление;
 $Cu^{2+} + 2\bar{e} \rightarrow Cu^{0}$ – катодное восстановление;


$$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu^{0} -$$
токообразующая реакция.

• Работа гальванического элемента

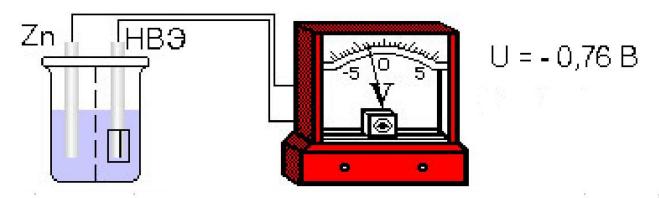
$$E = E_{\text{катода}} - E_{\text{анода}}$$

$$E_{Me^{n+}/Me^0} = E^0_{Me^{n+}/Me^0} + \frac{R \cdot T}{n \cdot F} \ln a_{Me^{n+}}$$

Водородный электрод

Схема:

$$(Pt) H_2 | H +$$

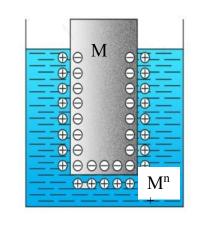

Уравнение электродной реакции:

$$H_2 \rightleftharpoons 2H^+ + 2e^-$$
.

$$E_{H_2/2H^+} = E^0_{H_2/2H^+} + 0,059 \lg a_{H^+}$$

$$E_{H_2/2H^+} = -0.059 \, pH$$

Ряд напряжений металлов



Li	Ва	Na	Zn	Fe	Pb	H ₂	Cu	Ag	Au
-3,04	-2,90	-2,71	-0,76	-0,44	-0,13	0	+0,34	+0,80	+1,5
Li+	Ba ²⁺	Na⁺	Zn ²⁺	Fe ²⁺	Pb ²⁺	2H+	Cu ²⁺	Ag+	Au ³⁺

Классификация электродов:

1) По природе электродной реакции:
□ I рода
□ II рода
□ Окислительно-восстановительные (RedOx)
□ Ионоселективные (ионообменные)
2) По назначению:
🛘 индикаторные (электроды определения)
🛘 электроды сравнения
□ мембранные

- Обратимы относительно катиона
- Схема:

$$Me^{n+}/Me^0$$
 (Ag, Zn, Cu, Cd)

• Электродный процесс:

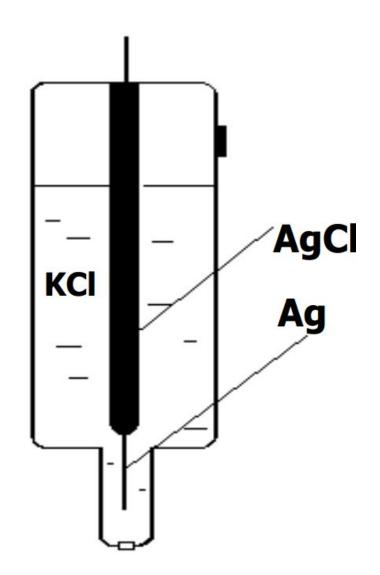
$$Me^{z^+} + ze^- \rightleftharpoons Me^0$$

$$E = E^0 + \frac{R \cdot T}{z \cdot F} \ln a_{Me^{z+}}$$

$$\frac{2,3R \cdot T}{F} = 0,059$$

$$E = E^0 + \frac{0,059}{z} \lg a_{Me^{z+}}$$

- Обратимы относительно аниона
- Схема:


• Электродный процесс:

$$MeAn + ze^- \rightleftharpoons Me + An^{z-}$$

$$E_{Me,MeAn/An^{z-}} = E^0 - \frac{RT}{z \cdot F} \ln a_{An^{z-}}$$

$$E_{Me,MeAn/An^{z-}} = E^0 - \frac{2,3RT}{z \cdot F} \lg a_{An^{z-}}$$

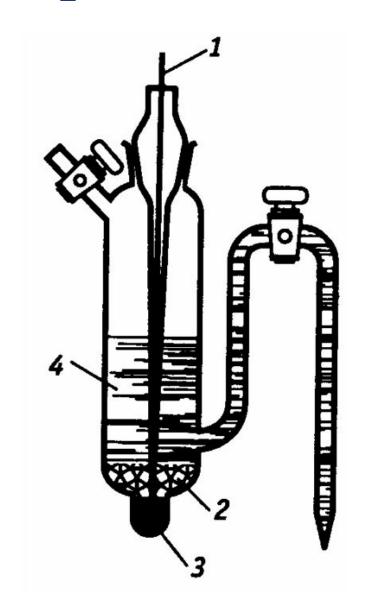
• Хлорсеребряный

- Хлорсеребряный электрод
- Cxema: Ag|AgCl, KCl или Ag|AgCl, HCl.
- Электродный процесс:

$$AgC1 + e^{-} \rightleftharpoons Ag + C1^{-}$$

$$E_{Me,MeAn/An^{z-}} = E^0 - \frac{RT}{z \cdot F} \ln a_{An^{z-}}$$

$$E_{Ag,AgCl/Cl^{-}} = 0,2224 - 0,059 \lg a_{Cl^{-}}$$


• Каломельный

1 – металлический контакт;

2 – слой Hg_2Cl_2 ;

3 – ртуть Н;

4 – раствор КС1.

- Каломельный электрод
- Cxema: Hg|Hg₂Cl₂, KCl
- Электродный процесс:

$$Hg_2Cl_2 + 2e^- \rightleftharpoons 2Hg + Cl^-$$

$$E_{Hg,Hg_2Cl_2/Cl^-} = E^0 - 0,059 \lg a_{Cl^-}$$

- Cxema: Pt | Ox, Red
- Электродный процесс:

$$Ox + ze^- \rightleftharpoons Red$$

• Уравнение Нернста:

$$E_{Pt/Ox,Red} = E^0 - \frac{0,059}{z} \lg \frac{a_{Red}}{a_{Ox}}$$

• Примеры: Pt | Fe³⁺, Fe²⁺

- Пример: Pt | Fe³⁺, Fe²⁺
- Электродный процесс:

•
$$Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+}$$

•
$$Fe^{2+} \rightleftharpoons Fe^{3+} + e^{-}$$

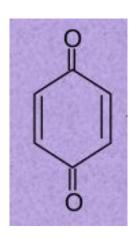
Стандартные окислительно-восстановительные (электродные) потенциалы при 298 К

Система	Реакция полуэлемента	φ^0 (B)
$F_2/2F^-$	$F_2 + 2\bar{e} \rightarrow 2F^-$	+ 2,87
MnO_4^-/Mn^{2+}	$MnO_4^- + 8H^+ + 5\bar{e} \rightarrow Mn^{2+} + 4H_2O$	+ 1,51
$Cr_2O_7^{2-}/2Cr^{3+}$	$Cr_2O_7^{2-}+14H^++6e^- \rightarrow 2Cr^{3+}+7H_2O$	+ 1,37
Br ₂ /2Br ⁻	$Br_2 + 2\bar{e} \rightarrow 2Br$	+ 1,07
Fe^{3+}/Fe^{2+}	$Fe^{3+} + \bar{e} \rightarrow Fe^{2+}$	+0,77
$I_2/2I^-$	$I_2 + 2\bar{e} \rightarrow 2I^-$	+0,54

- **Пример:** Pt | MnO₄⁻, Mn²⁺
- Электродный процесс:

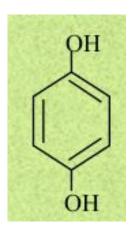
$$MnO_4^- + 8H^+ + 5\bar{e} \approx Mn^{2+} + 4H_2O$$

6.45

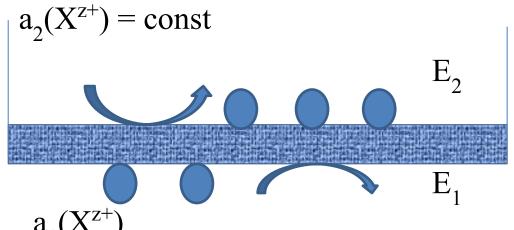

Критерии самопроизвольного протекания **ОВ**-реакций

• если $\Delta G < 0$ и $\Delta E > 0$.

$$Co^{3+} + Fe^{2+} \rightarrow Fe^{3+} + Co^{2+}$$
:
 $\Delta E = E_{\text{катода}} - E_{\text{анода}} = +1,84 - 0,77 = 1,07B$


- Хингидронный электрод потенциал зависит от рН
- **Cxema:** Pt $\mid C_6H_4O_2$, HO- C_6H_4 -OH, H⁺
- Электродный процесс:

$$C_6H_4O_2 + 2H^+ + ze^- \rightleftharpoons HO-C_6H_4-OH$$



$$E = E^0 + 0.059 \lg a_{H^+}$$

$$E = E^0 - 0.059 \, pH$$

Ионоселективные электроды

Исследуемый раствор

Внутренний раствор

$$E_{M} = E_{1} - E_{2} = \frac{0.0592}{z} \cdot \lg \frac{a_{1}(X^{z+})}{a_{2}(X^{z+})} = E_{0} + \frac{0.0592}{z} \cdot \lg a_{1}(X^{z+})$$

Ионоселективные электроды

- Стеклянный электрод
- Схема: Ag | AgCl,KCl | стекло | H+ | раствор
- Электродный процесс:

$$Na^{+}(cтeклo) + H^{+}(p-p) = H^{+}(c\tau.) + Na^{+}(p-p)$$

$$E_{M} = E_{1} - E_{2} = \frac{0,0592}{z} \cdot \lg \frac{a_{1}(X^{z+})}{a_{2}(X^{z+})} = E_{0} + \frac{0,0592}{z} \cdot \lg a_{1}(X^{z+})$$

$$E = E_0 + 0.059 \lg a_{H^+} = E_0 - 0.059 pH$$

Потенциометрия

- Сравнения (Хлорсеребряный)
- Индикаторный (Стеклянный)

