Малоотходные технологии в энергетике

Соловьев П.В.

Антропогенное воздействие

технологий на окружающую среду

Факторы загрязнения атмосферы:

- Выбросы тепличных газов (СО₂);
- Выбросы химических веществ (F -, Cl – углеводороды);
- Выбросы твердых веществ (уменьшение прозрачности воздуха);
- Выбросы ядовитых газов (NO_x);
- Радиоактивные загрязнения.

Факторы загрязнения пресной воды:

- Сточные и промышленные сбросы;
- Уменьшение естественных водосборных площадей;
- Смыв пестицидов в воду;
- Тепловые сбросы.

Энергетика как фактор загрязнения

окружающей среды

Является определяющим загрязнителем!

Уменьшение загрязнений связаны с:

- Улучшение качества очистки выбросов;
- Утилизация твердых отходов
- Повышение энергоэффективности (энергосбережение).

Продукты загрязнения при производстве энергии:

- CO;
- SO₂;
- Оксиды азота;
- Твердые частицы;
- Аэрозоли;
- Естественные радиоактивные элементы;
- CO₂.

Энергосбережение

Проблема энергетики в России. Основные направления энергетической политики РФ:

- 1. Искаженные цены на энергоресурсы и энергию;
- 2. Кризис угольной промышленности;
- 3. Искаженная система расчетов и потребления;
- 4. Устаревшее производственное оборудование;
- 5. Кризис неплатежей;
- 6. Монополия основных энергопроизводителей;
- 7. Отсутствие надежной системы контроля загрязнений от энергетики.

- 1. Создание платежеспособного спроса;
- 2. Преодоление кризиса неплатежей;
- 3. Расширение экспорта топливных ресурсов;
- 4. Формирование свободного энергетического рынка;
- 5. Привлечение инвестиций в энергетику;
- 6. Реконструкция основных фондов;
- 7. Энергосбережение.

Регулирование тарифов на теплоэнергетику

Прямое регулирование осуществляет основывается на требованиях Гражданского кодекса РФ (6. Энергосбережение).

Косвенное регулирование:

- Для ТЭС федерального уровня регулирует ФЭК (федеральная энергетическая комиссия);
- Для ТЭЦ общего пользования в составе регионального АОэнерго – регулирует РЭКи (региональная энергетическая комиссия).

Сначала регулируются тарифы на электроэнергию, а определение тарифов на тепловую энергию, ставится в зависимость от того, какую долю топлива ФЭК или РЭК отнесут на выработку электроэнергии.

Регулирование тарифов на теплоэнергетику

Подходы к правильному регулированию тарифов:

- 1. Установить собственника источника тепла, тепловых сетей, жилых зданий.
- 2. ФЗ «О государственном регулировании тарифов на электрическую и тепловую энергию в РФ» от 10.03.1995, Постановление правительства от 4.02.1997 №221 «Об основах ценообразования и порядке государственного регулирования и применения тарифов на электрическую и тепловую энергию». Т.о. тарифы должны регулироваться на федеральном уровне.
- 3. Тарифы в секторе муниципального теплоснабжения должны решаться с учетом требований федерального, регионального и местного законодательств.
- 4. Экономически оправдать распределение расходов топлива между электрической и тепловой энергетикой.

Взаимоотношения поставщиков

и потребителей энергии

Кому принадлежат источники энергии:

- 1. Большинство ТЭЦ общего пользования входят в состав АО-энерго.
- 2. Городские, квартальные котельные либо государственные, либо муниципальные.
- 3. Промышленные ТЭЦ и котельные государственные, муниципальные.
- 4. Индивидуальные котельные, встроенные в здания собственник тот, кто является собственником здания.

Кому принадлежат тепловые сети:

- 1. Обычно сеть принадлежит тому же собственнику, что и источник тепла;
- 2. Собственнику источника тепла может принадлежать только магистральная линия, а распределительные сети являются муниципальными;
- 3. Все сети муниципальные.

рзаимоотпошения поставщиков и

потребителей энергии

В соответствии с Гражданским кодексом РФ и ФЗ «О предприятии» :

Энергоснабжающая организация – это коммерческая организация, осуществляющая в обслуживаемом регионе продажу потребителям произведенной и (или) купленной тепловой энергии (мощности).

Товар – это тепловая энергия, горячая вода

Услуги теплоснабжения:

- Услуги центрального отопления;
- Услуги горячего водоснабжения;
- Услуги вентиляции и кондиционирования;
- Теплофикацию домовладений, дачных и гаражных кооперативов;
- Установку, наладку, ремонт и облуживание приборов учета расхода тепловой энергии;
- Устройство тепловых пунктов, бойлеров;
- Ремонт и обслуживание тепловых пунктов, бойлеров.

Потребители тепловой энергии – юридические и физические лица.

Оплата тепловой энергии – по «Договору теплоснабжения», по показаниям счетчиков тепловой энергии.

Проблемы в секторе потребления

тепловой энергии

Конечные потребитель тепловой энергии – семья! При существующей конструкции невозможно измерить количество тепловой энергии, затрачиваемой на отопление одной квартиры.

Проблема решается юридически!

С участие Юр.лица:

«Договор на оказание коммунальных услуг по теплоснабжению» Юридическое лицо – собственник товара заключает договор на оказание коммунальных услуг по теплоснабжению с жителями.

Напрямую (как при оплате электроэнергии): Семья заключает договор непосредственно с федеральной «АО-энерго» компанией.

Нормативно – правовая база

энергосбережения

Основные направление энергетической политики изложены Указ Президента РФ №472 от 07.05.95. – правительству разработать энергетические приоритеты политики РФ:

- Устойчивое обеспечение страны энергоносителями;
- Повышение эффективности использования топливно-энергетических ресурсов;
- Создание надежной сырьевой базы ТЭК;
- Уменьшение негативного воздействия энергетики на окружающую среду;
- Поддержание экспортного потенциала ТЭК;
- Сохранение энергетической независимости.

Главной энергетической задачей является структурная перестройка отрасли ТЭК:

- Увеличение доли природного газа;
- Обоснованное использование АЭС, ГЭС;
- Стабилизация добычи нефти;
- Увеличение производства светлых нефтепродуктов;
- Увеличение использование местных топливных ресурсов;
- Внедрение высокоэффективного оборудования;

Нормативно – правовая база

энергосбережения

Иерархия нормативно-законодательной основы энергосбережения:

- Конституция РФ
- Гражданский кодекс РФ (§6 Энергоснабжение, ст. 539-548)
- ФЗ, принимаемые госдумой («О государственном регулировании тарифов» №41, «Об энергоснабжении» №28)
- Указы президента РФ («О необходимых мерах по государственному регулированию» №220, «Основные направления энергетической политики» №472, «О федеральной энергетической комиссии» №1194)
- Постановления и решения правительства («О неотложных мерах по энергосбережению» №1087, «О федеральном оптовом рынке электроэнергии» № 793, «Об основах ценообразования» №121,
- Региональные законы и постановления регионов
- Постановления и решения муниципальных образований
- Приказы, распоряжения руководителей предприятий.

Малоотходные технологии в энергетике

Малоотходные

технологии в энергетике

- это такой способ производства продукции (процесс, предприятие, территориально-производственный комплекс), при котором наиболее рационально и комплексно используются сырье и энергия в цикле сырьевые ресурсы — производство — потребление — вторичные сырьевые ресурсы таким образом, что любые воздействия на окружающую среду не нарушают ее нормального функционирования.

Принципы создания малоотходных технологий

и производств

- ЛОКОЛЬНОСТЬ
- Превентивность
- Системность
- Эколого-экономическая оценка
- Комплексность
- Финансовая обеспеченность
- Прибыльность
- Непрерывность

Выгоды предприятия от использования

малоотходных технологий

В сфере охраны окружающей среды:

- сокращение ресурсоемкости производства;
- сокращение землеемкости производства за счет уменьшения необходимости складирования отходов;
- сокращение выбросов, сбросов загрязняющих веществ, уменьшение количества отходов.

В сфере охраны труда:

- улучшение условий труда на рабочем месте, повышение безопасности рабочего места;
- уменьшение риска для здоровья персонала;
- повышение уровня привлекательности работы для молодежи.

В сфере экономики:

- сокращение затрат на сырье, энергию, топливо, воду;
- сокращение затрат на очистку сточных вод, пыле- и газообразных выбросов, утилизацию отходов;
- сокращение транспортных расходов;
- уменьшение экологических платежей и штрафов;
- улучшение качественных характеристик продукции;
- снижение себестоимости продукции;
- рост прибыли.

Малоотходные технологии в аппаратно-

технологическом процессе

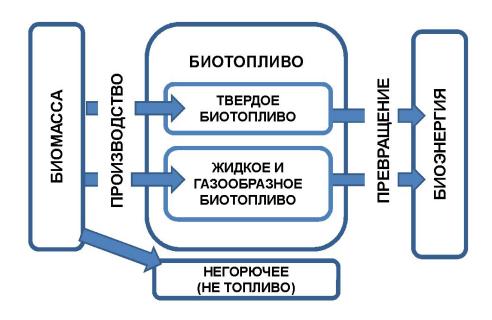
- разработка принципиально новых аппаратов,
 в т. ч. позволяющих совмещать в одном аппарате несколько технологических процессов;
- оптимизация размеров и производительности;
- герметизация;
- использование новых конструкционных материалов, позволяющих увеличить долговечность аппаратов, уменьшить их массу и т. д.

Малоотходные технологии в применении к сырью и

энергоресурсам

- обоснованность качества, в частности, использование сырья и материалов, например воды или сырья строго определенного качества;
- предварительная подготовка сырья и топлива:
 извлечение наиболее токсичных компонентов,
 например серы из топлива;
- замена высокотоксичных материалов, например ртути, кадмия, свинца на менее токсичные вещества при производстве красителей, катализаторов, элементов питания и других изделий и материалов;
- возможность замены сырья и энергоресурсов на возобновимые, нетрадиционные, местные, попутно добываемые и др.

Основные физико-химические закономерности при разработке безотходных и малоотходных технологий


Термодинамические расчеты

При проектировании важны термодинамические расчеты:

- Сделать заключение о возможности невозможности химического превращения
- Предварительно выбрать условия прохождения процесса
- Определить состав продуктов
- Рассчитать теоретически достижимые степени превращения исходных веществ

Применение технологии малоотходного

производства в лесопромышленном комплексе

Использование биомассы для получения биоэнергии

Классификация твердого биотоплива в

зависимости от происхождения

Торговые формы твердого биотоплива

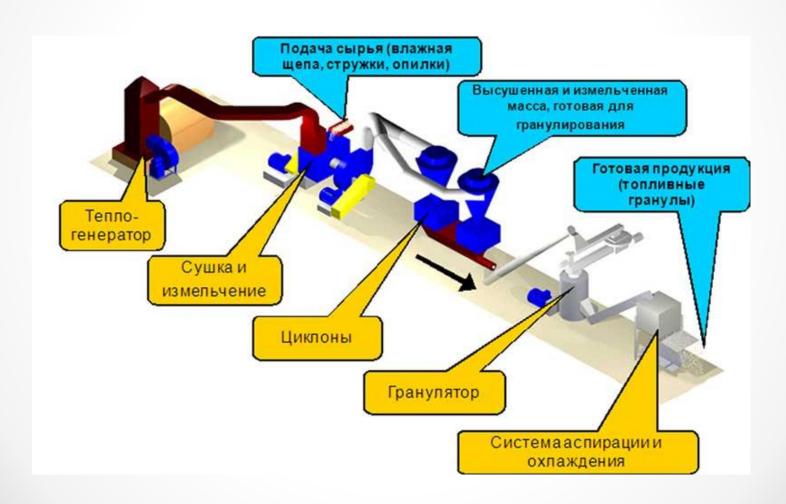
Табл. П1.1. Торговые формы твердого биотоплива

таба. 111.1. торговые формы твердого опотоплива		
Торговая форма	Общие производственные процессы	Типичный размер
Полное дерево	Необработанное дерево, включая	
	ветки и корневую систему	>
Кругляк, поленья/дрова	Резка острыми инструментами	1001
Щепа	Резка острыми инструментами	5100 мм
Дробленое топливо	Дробление тупыми инструментами	Различный
Кора	Остатки коры после окорки могут	Различный
	быть измельчены или нет	
Пачки	Продольная укладка и связывание	Различный
Пыль, мука	Помол	<
Опилки	Резка острыми инструментами	15 мм
Стружка	Строгание острыми инструментами	130 мм
Брикеты	Механическое сжатие (пресс)	Диаметр ≥
Пеллеты	Механическое сжатие (пресс)	Диаметр <
Кипы:		
– малые прямоугольные;	Сжатие (прессование) и связывание	
– большие прямоугольные;	кубами	
– круглые (рулоны)		

Нормативные документы

для определения технических характеристик биотоплива

Табл. П1.2. Нормативные документы для определения технических характеристик биотоплива

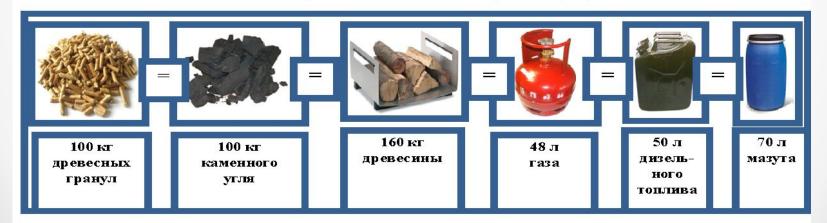

для определения технических характеристик опотоплива		
Параметр	Нормативный документ	
Происхождение и источник	ГОСТ Р 54220	
Торговая форма	ГОСТ Р 54220	
Общая влага, W_{t} , и аналитическая влага,	ГОСТ Р 54186	
$W_{\rm a}$	ГОСТ Р 54192	
	ГОСТ Р 54211	
Зольность, А	ГОСТ Р 54185	
Выход летучих веществ	ГОСТ Р 54184	
Гранулометрический состав, Р	ГОСТ Р 54188	
	ГОСТ Р 54189	
	ГОСТ Р 54190	
Насыпная плотность, BD	ГОСТ Р 54191	
Содержание углерода (С), водорода (Н) и азота (N)	ГОСТ Р 54216	
Содержание серы (S) и хлора (Cl)	ГОСТ Р 54215	
Содержание макроэлементов (Al, Si, K,		
Na, Ca, Mg, Fe, P, Ti)	ГОСТ Р 54213	
Содержание макроэлементов (As, Ba, Be,		
Cd, Co, Cr, Cu, Hg, Mo, Mn, Ni, Pb, Se, Te,	ГОСТ Р 54214	
V, Zn)		

Ожидаемые результаты к 2017 г.:

- объем древесных отходов, используемых для производства биотоплива, **240 тыс. т в год**;
- производство топливных брикетов и гранул 90 тыс. т
 в год;
- суммарная введенная мощность по производству тепловой энергии из древесных отходов **32 МВТ**;
- суммарная введенная мощность по производству электроэнергии из древесных отходов **24 МВТ**;
- использование топливных брикетов в коммунальных котельных 40 тыс. т в год;
- объемы продаж топливных брикетов и гранул на рынке Республики Коми — 50 тыс. т в год.

Технологические схемы и оборудование для

получения пеллет и брикетов из древесных отходов



Энергетические характеристики различных видов топлива

Теплота сгорания = 17,5 МДж/кг

Материальный баланс процесса горения опилок влажностью

55 %. Определение объемов воздуха и продуктов сгорания