
Молекулярная физика

Идеальный газ

1. Молекулы представлены как **материальные точки**

2. Между молекулами **отсутствуют** силы притяжения и отталкивания

Модель идеального газа была предложена в 1847 г. Дж. Герапатом

Эта модель является основой для МКТ

Модель идеального газа применяется для решения задач **термодинамики** газов **и аэрогазодинамики**

Все газы при н.у. P = 1 атм. t = 0 °C ведут себя как идеальные

Уравнение состояния идеального газа

Уравнение Менделеева – Клапейрона:

$$PV = vRT$$

$$PV = \frac{m}{\mu}RT$$

$$n = \frac{N}{V}, k = \frac{R}{N_A} \longrightarrow P = nkT$$

$$k = 1,38 \cdot 10^{-23} \, \text{Дж/K} - \text{постоянная Больцмана}$$

Три основных константы молекулярной физики

 $N_{\Delta} = 6,02 \cdot 10^{23} \text{ моль}^{-1} -$ постоянная Авогадро

 $R = 8,31 \, \text{Дж/моль} \cdot \text{K}$ — универсальная газовая постоянная

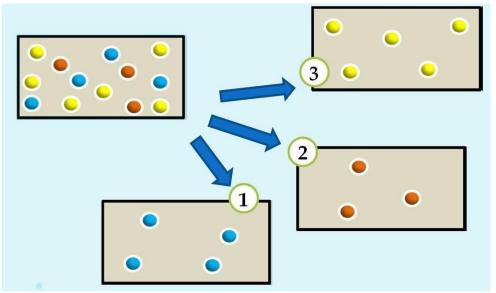
 $k = 1,38 \cdot 10^{-23} \, \text{Дж/K} - \text{постоянная Больцмана}$

$$k = \frac{R}{N_A}$$

Изопроцессы в идеальных газах

```
(m = const)

Изотермический процесс (T = const)


Изобарный процесс (P = const)

Изохорный процесс (V = const)
```

	p(V)	p(T)	V(T)
изобарный $p = const,$ $\frac{V}{T} = const$	$ \begin{array}{c c} \hline P & T_1 \\ \hline T_2 \\ \hline V \\ \hline T_1 < T_2 \end{array} $	V_1 V_2 $V_1 < V_2$	p_1 p_2 $p_1 < p_2$ $p_1 < p_2$
$V = const,$ $\frac{p}{T} = const$	$T_1 < T_2$	v_1 v_2 $v_1 < v_2$	$V \qquad p_1$ p_2 $p_1 < p_2$
изотермический $T = const,$ $pV = const$	T_1 T_2 $T_1 < T_2$	V_1 V_2 $V_1 < V_2$ T	p_1 p_2 $p_1 < p_2$ T

Смесь идеальных газов

Парциальное давление – это давление, оказываемое на стенки сосуда молекулами одного вида, если бы они занимали весь объем

Закон Дальтона: давление смеси идеальных газов равно сумме парциальных давлений этих газов:

$$P = \sum_{i} P_{i}$$

Давление идеального газа на стенки сосуда

Давление газа на стенку сосуда определяется **средним** импульсом, передаваемым стенке молекулами газа при соударениях

$$P = \frac{1}{3} m_0 n v_{\kappa e}^2$$
 - уравнение Клаузиуса - основное уравнение МКТ идеальных газов

$$\upsilon_{\kappa e} = \sqrt{\frac{3kT}{m_0}} = \sqrt{\frac{3RT}{\mu}}$$

$$m_0 = \frac{\mu}{N}$$
 - масса одной молекулы

Молекулярно-кинетический смысл ТЕМПЕРАТУРЫ

$$T = t^{0}C + 273,15$$
 [K] $1^{\circ}C = 1$ K

$$\tilde{oldsymbol{arepsilon}}_{nocm} = rac{oldsymbol{m_0} \left\langle oldsymbol{\upsilon}^2
ight
angle}{2}$$

- средняя кинетическая энергия $=\frac{m_0\langle v^2\rangle}{m_0\langle v^2\rangle}$ поступательного движения молекулы

$$P = \frac{2}{3}n\tilde{\varepsilon}_{nocm}$$

$$P = nkT$$

$$\tilde{\varepsilon}_{nocm} = \frac{3}{2}kT$$

Абсолютная температура - мера кинетической энергии поступательного движения молекул

СТЕПЕНИ СВОБОДЫ МОЛЕКУЛЫ

Степени свободы – число **координат**, определяющие положение тела в пространстве

Материальная точка i = 3 (x, y, z)

Твердое тело i = 6 $(x, y, z) - задают центр масс <math>(\theta, \psi, \phi) - задают положение тела в пространстве$

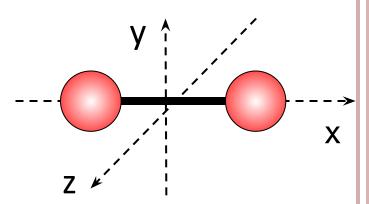
(x, y, z) – поступательные (θ, ψ, ϕ) - вращательные

Общая формула: i = 3N, i = 3N, i = 3N

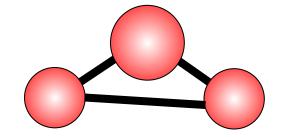
точек

1) одноатомная

$$i = 3 \cdot 1$$


молекула:

2) двухатомная молекулажесткая связь – минус 1


$$i = 3N - 1 = 3 \cdot 2 - 1 = 5$$

$$(x, y, z)$$
 и (θ, ψ)

3) трехатомная (и больше): три жестких связи –

$$V_{i} = 3V_{i} - 3 = 3 \cdot 3 - 3 = 6$$

Равномерное распределение кинетической энергии по степеням свободы молекулы

Средняя кинетическая энергия, приходящаяся при тепловом равновесии на одну любую степень свободы молекулы, равна ½·kT

$$\tilde{\varepsilon} = \frac{i}{2}kT$$

 $ilde{m{arepsilon}}$ - средняя кинетическая энергия молекулы

 $oldsymbol{i}$ - число степеней свободы

Спасибо за внимание!