
КИСЛОТЫ

Название	donwara	Кислотный	Название
кислоты	формула	остаток	соли
Хлороводородна			Хлорид
Я	HCl	Cl ⁻	
(соляная)			
Бромоводородн	IID	D _w -	Бромид
ая	HBr	Br⁻	
Фтороводородна			Фторид
Я	HF	F-	
(плавиковая)			
Иодоводородная	HI	1-	Иодид
Сероводородная	H ₂ S	S ²⁻	Сульфид
Азотная	HNO	NO ₃ -	Нитрат
Азотистая	HNO,	NO ₂ -	Нитрит
Сернистая	H_2SO_3	SO ₃ ² -	Сульфит
Серная	H ₂ SO ₄	SO_{Δ}^{2}	Сульфат
Фосфорная	$H_3^-PO_4$	PO ₄ 3-	Фосфат
Угольная	H ₂ CO ₃	CO ₃ ² -	Карбонат
Кремниевая	H ₂ SiO ₃	SiO ₃ ²⁻	Силикат

КЛАССИФИКАЦИЯ КИСЛОТ.

1. По содержанию кислорода.

бескислородные

HF HCI HBr

HI H2S

кислородсодержащие

HNO3 H2504

H2CO3 H3PO4

2. По количеству атомов водорода.

одно основны е

HCI HNO3

прех-

H3PO4

двух-

H25

H2504

pedsovet.s

Порядок названий кислот:

Каждой кислоте соответствует свой кислотный оксид. При этом валентность центрального атома в оксиде и в кислоте совпадают. Например в оксиде серы:

502 в соответствующей кислоте H2503

+5 -2 + +5 -2 P2O5 и H3PO4

Валентность кислотного остатка определяется по количеству атомов водорода в кислоте!

Физические свойства кислот

При обычных условиях кислоты могут быть твердыми и жидкими.

Кислоты -едкие жидкости (кроме кремневой), с кислым вкусом, без запаха, разъедают многие вещества.

Слабые кислоты угольная и сернистая при обычных условиях тут же разлагаются на кислотный оксид и воду:

$$H_2SO_3 = SO_2 \uparrow + H_2O$$

 $H_2CO_3 = CO_2 \uparrow + H_2O$

Химические свойства кислот

1. Изменение цвета индикаторов (лакмуса, метилоранжа) на красный цвет

Индикатор	Кислая среда, pH<7	Нейтральная среда, pH=7	Щелочная среда, pH>7
Лакмус	Красный	Фиолетовый	Синий
Фенолфталеин	Бесцветный	Бесцветный	Малиновый
Метиловый оранжевый	Розовый	Оранжевый	Желтый

2. Кислота + металл (до H) = соль + H₂

Взаимодействие с металлами:

Правило: Металлы, стоящие в ряду активности металлов до Н, вытесняют его из кислоты (исключение составляют концентрированная серная и любая азотная).

 $2HCl + Zn = ZnCl_2 + H_2$ Кислота + Me = Соль + H₂

3.Кислота + основный оксид = соль + H₂O

(оксид металла со ст.ок.≤3)

•
$$2HCl + CuO = CuCl_2 + H_2O$$

• HCl +
$$P_2O_5 \rightarrow$$

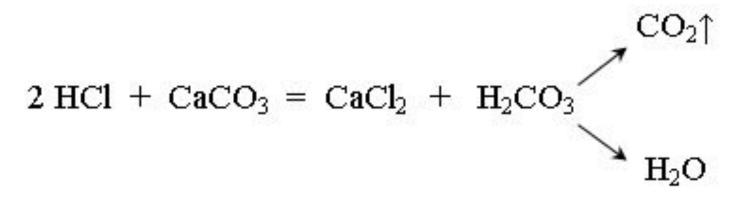
•
$$H_2SO_4 + CrO_3 \rightarrow$$

4.Кислота + Основание = соль + H_2O

 Реакция между кислотой и основанием с получением соли и воды называется реакцией <u>НЕЙТРАЛИЗАЦИИ</u>

- $HNO_3 + NaOH (\phi-\phi) = NaNO_3 + H_2O$
- 3HCl + Al(OH)₃ \downarrow = AlCl₃ + 3H₂O

5.Кислота + Соль = новая кислота + новая соль


Правило: Кислота реагирует с солью, если после реакции образуется **неэлектролит** (осадок, газ, вода)

«Летучие» кислоты:

$$CO_2\uparrow$$
 SO_2
 $H_2S\uparrow$ H_2CO_3 H_2SO_3 H_2O H_2O

нерастворимые – <u>осадок-</u> находим по таблице растворимости(форзац учебника) – на пересечении + иона и – иона: например <u>AgCl</u> - H –нерастворим, т.е. выпадет в осадок:

F	PAC	TB	OPV	1M	OC.	ТЬ
ионы	H	Li	NH_4^{\dagger}	K	Na	Ag
OH		Р	Р	P	Р	-
NO ₃	Р	Р	Р	Р	Р	Р
F ⁻	Р	P	Р	P	Р	P
C1	Р	Р	Р	P	Р	н

$$HCl + AgNO_3 = AgCl \downarrow + HNO_3$$

Способы получения кислот

1. Кислотный оксид (кроме SiO_2) + $H_2O =$ Кислота $SO_2 + H_2O = H_2SO_3$

2. Кислота + Соль = новая соль + новая кислота
$$H_2SO_4 + BaCl_2 = BaSO_4 \downarrow + 2 HCl$$

3. Водород + неметалл = кислота $H_2 + S = H_2S$

Завершите запись тех уравнений реакций, которые будут происходить

- $H_2SO_4 + NaOH \rightarrow$
- HCl + Cu →
- HNO₃ + SiO₂ \rightarrow
- H_3PO_4 + $CaCl_2 \rightarrow$
- HBr + Al →

- HI + MgO \rightarrow
- HNO₃ + Fe₂(SO₄)₃ \rightarrow
- $H_2S + Pb(NO_3)_2 \rightarrow$
- $H_2SiO_3 + KCI \rightarrow$
- H_2SO_4 + $Fe(OH)_3$ \rightarrow

Осуществить превращения

•
$$P \rightarrow P_2O_5 \rightarrow H_3PO_4 \rightarrow Na_3PO_4 \rightarrow Ba_3(PO_4)_2$$

•
$$H_2SO_4 \rightarrow HCl \rightarrow HNO_3 \rightarrow AgNO_3 \rightarrow Ag_2S$$

• $Na \rightarrow NaOH \rightarrow Na_3PO_4 \rightarrow NaCl \rightarrow NaNO_3$