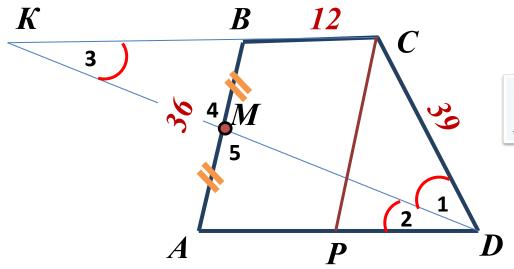
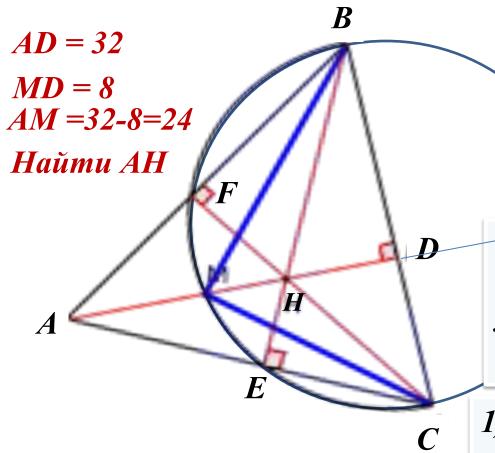
Вариант 1 № 26



1.
$$\Delta KCD - равнобедренный, $KC = CD = 39$$$

- 2. $\triangle KBM = \triangle AMD$, AD = 27
- 3. Пусть $CP \parallel BA$, ABCP параллелограмм, CP = 36, PD = 15
- 4. В треугольнике CPD CD = 39, CP = 36, PD = 15. По теореме, обратной теореме Пифагора \triangle CPD—прямоугольный, CP—высота трапеции.

5.
$$S_{ABCD} = \frac{12+27}{2} \cdot 36 = 702$$



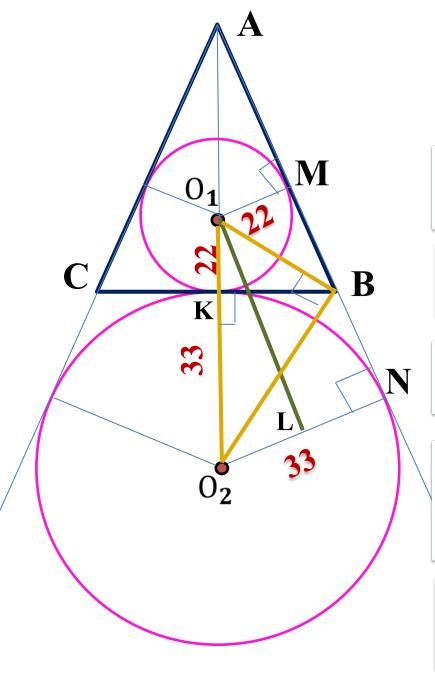
Вариант 2 № 26

План решения.

Т.к. углы ВМС, ВFС, ВЕС – прямые, то их вершины лежат на окружности с диаметром ВС.

1) По следствию из теоремы о секущей и касательной $AM \cdot AK = AF \cdot AB$, $24 \cdot (24 + 16) = AF \cdot AB = 960$

2)
$$\triangle AFH \sim \triangle ABD$$
, $\frac{AH}{AB} = \frac{AF}{AD}$, $\frac{AH}{AB} = \frac{AF \cdot AB}{AD} = \frac{960}{32} = 30$



Вариант 3 № 26

1.
$$\Pi ycmb O_1L || MN$$
,
 $O_2L = 11$, $O_1L = 22\sqrt{6}$

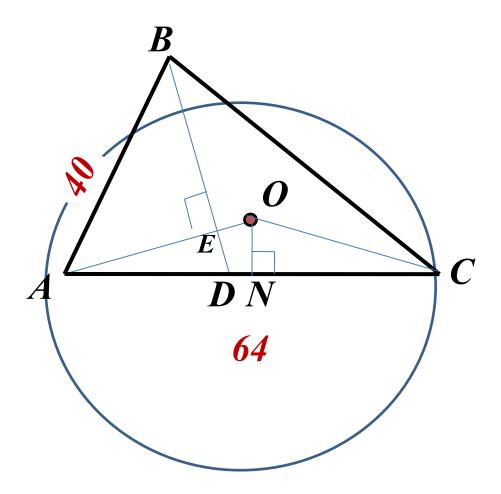
2.
$$\Delta O_1 O_2 B$$
 — прямоугольный, $KB - высота$, $KB = 11\sqrt{6}$

3.
$$\Delta O_1 O_2 L \sim \Delta \text{ AKB}$$
,
 $AK = 132, AB = 55\sqrt{6}$

4.
$$\frac{AK}{AB} = \sin \angle B$$
,
 $\sin \angle B = \frac{2\sqrt{6}}{5}$.

5. B ABC no meopeme синусов
$$\frac{AC}{\sin \angle B} = \frac{AB}{\sin \angle B} = 2R, R = 68,75$$

AB = 40, AC = 64. Haŭmu DC



Вариант 4 № 26

1.
$$\angle ABC = \frac{1}{2} \angle AOC$$
,
 $\angle ABC = \angle AON$.

2.
$$\triangle AON \sim \triangle AED$$
,
 $\angle ABC = \angle ADE$.

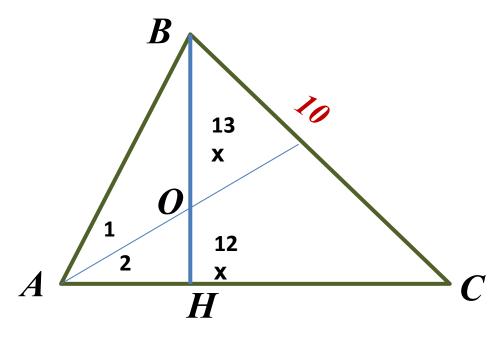
3.
$$\triangle ABD \sim \triangle ABC$$
, $\frac{AB}{AC} = \frac{AD}{AB}$, $AD = 25$.

4.
$$AC = 64$$
, $AD = 25$, $DC = 64 - 25 = 39$

$$BC = 10$$
,

BO:OH = 13:12.

Найти В.



Вариант 5 № 26

Решение.

1) Т.к. АО- биссектриса
$$\Delta ABH$$
, то $\frac{OH}{AH} = \frac{OB}{AB}$, т.е. $\frac{12x}{AH} = \frac{13x}{AB}$, $\frac{12x}{AB} = \frac{AH}{AB}$, $\frac{AH}{AB} = \frac{12}{13} = \cos A$. Тогда из основного тригонометрического тождества $\sin A = \frac{5}{13}$

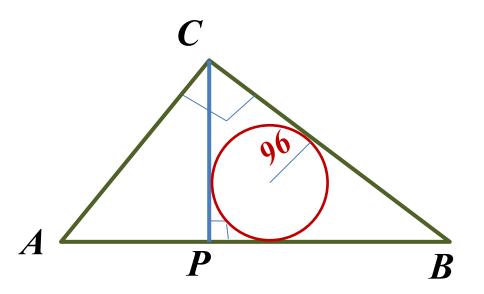
2) По теореме синусов
$$\frac{BC}{\sin A} = 2R$$
,
 $10 : \frac{5}{13} = 2R$, $R = 13$

Ответ: 13.

$$\mathbf{tg} \angle \mathbf{A} = \frac{8}{15}, \quad r_{\triangle CPB} = 96.$$
Haŭmu $r_{\triangle ABC}$

Вариант 6 № 26

План решения.

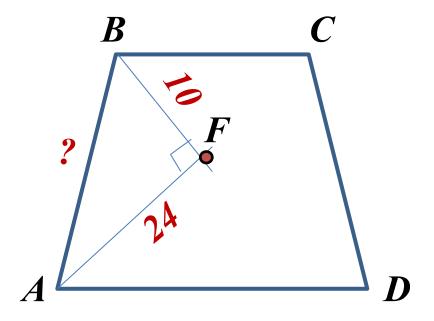


1)
$$\angle A = \angle PCB$$
, $\operatorname{tg} \angle A = \frac{8}{15}$, $\frac{PB}{CP} = \frac{8}{15}$.

- 2) $\triangle CPB прямоугольный,$ PB = 8x, CP = 15x,CB = 17x.
- 3) $\triangle CPB \sim \triangle ABC$, $k = \frac{8}{17}$, $\frac{r_{\triangle CPB}}{r_{\triangle ABC}} = \frac{8}{17}$, $r_{\triangle ABC} = 204$

Ответ: 204.

Вариант 7 № 26



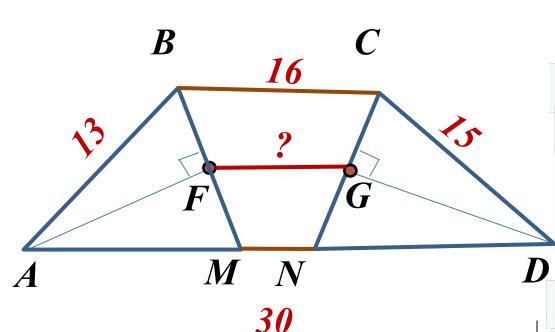
- 1. **ДАВ** *F* прямоугольный
- 2. По теореме Пифагора AB = 26

C A A B

Вариант 8 № 26

- 1. ДАВ G прямоугольный
- 2. По теореме Пифагора AB = 30

Вариант 9 № 26



3. FG - cpedhaaлиниа трапеции MBCN, MN = 2, FG = 9.

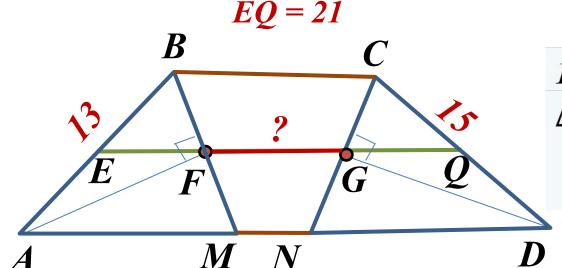
План решения.

1. ∆AB**F - прямоугольный** ∆AB**M - павнобедренный F - середина ВМ** AM = AB = 13

2. **\(\DG\)** - прямоугольный

∆CDN - равнобедренный **G −** середина NC **CD = DN = 15**

Вариант 10 № 26

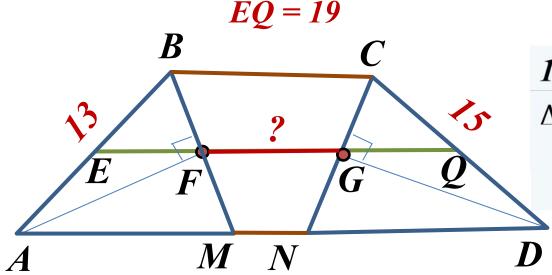


План решения.

∆ABF - прямоугольный
 ∆ABM - равнобедренный
 F - середина ВМ
 AM = AB = 13

- 3. $EF cpedhar nuhur \Delta ABM$, EF = 6.5 $GQ cpedhar nuhur \Delta NCD$, GQ = 7.5 FG = 21 (6.5 + 7.5) = 7

Вариант 11 № 26

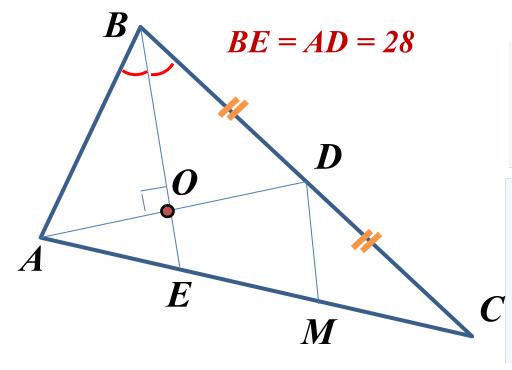


План решения.

1. ∆ABF - прямоугольный ∆ABM - павнобедпенный F - середина ВМ AM = AB = 13

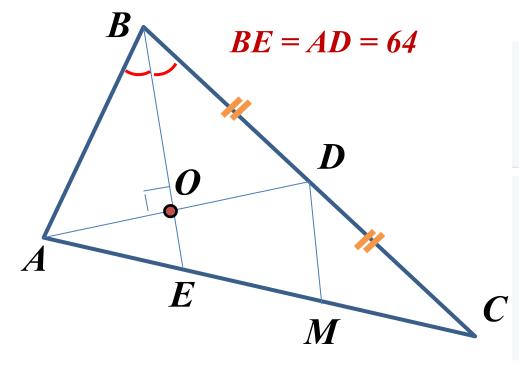
- 3. EF средняя линия \triangle ABM, EF = 6,5 GQ средняя линия \triangle NCD, GQ = 7,5 FG = 19 (6,5 + 7,5) = 5
- ∆CDG прямоугольный
 ∆CDN равнобедренный
 G середина NC
 CD = DN = 15

Вариант 12 № 26



- 1. ∆AB**D**− равнобедренный, **BO** − медиана, **AO** = **OD** = 14
- 2. $\Pi ycmb DM \parallel BE$, DM = 14, EM = MC, OE = 7, AE = EM, $AE = \frac{1}{3}AC$
- 3. *U*3 \triangle AOE по теореме Пифагора $AE = 7\sqrt{5}$, $AC = 21\sqrt{5}$. *U*3 \triangle AOB OB = 21, $AB = 7\sqrt{13}$, BC = 2 $AB = 14\sqrt{13}$

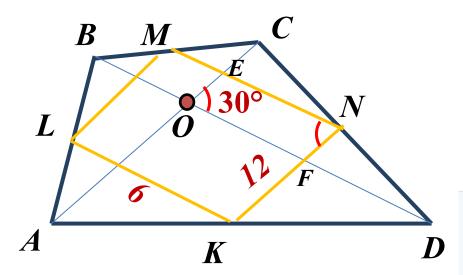
Вариант 13 № 26



- 1. $\triangle ABD$ равнобедренный, BO— медиана, AO = OD = 32
- 2. $\Pi ycmb DM \parallel BE$, DM = 32, EM = MC, OE = 16, AE = EM, $AE = \frac{1}{3}AC$
- 3. *Из* \triangle AOE по теореме Пифагора $AE = 16\sqrt{3}$, $AC = 48\sqrt{3}$. *Из* \triangle AOB OB = 21, $AB = 16\sqrt{13}$, BC = 2 $AB = 32\sqrt{13}$

Вариант 14 № 26

Haŭmu S_{KLMN}



$$\begin{array}{ll}
2.S_{KLMN} = \\
= 2 \cdot (\frac{1}{2}MN \cdot KN \cdot \sin 30^\circ) = \\
= 36
\end{array}$$

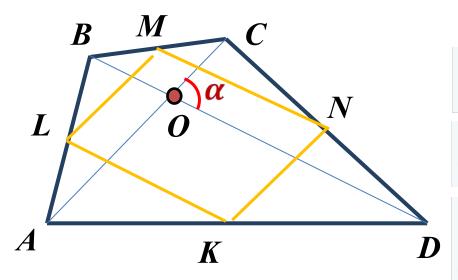
Haŭmu S_{KLMN}

Вариант 15 № 26

$$2.S_{KLMN} = 2 \cdot (\frac{1}{2}MN \cdot KN \cdot \sin 30^\circ) = 56$$

Вариант 16 № 26

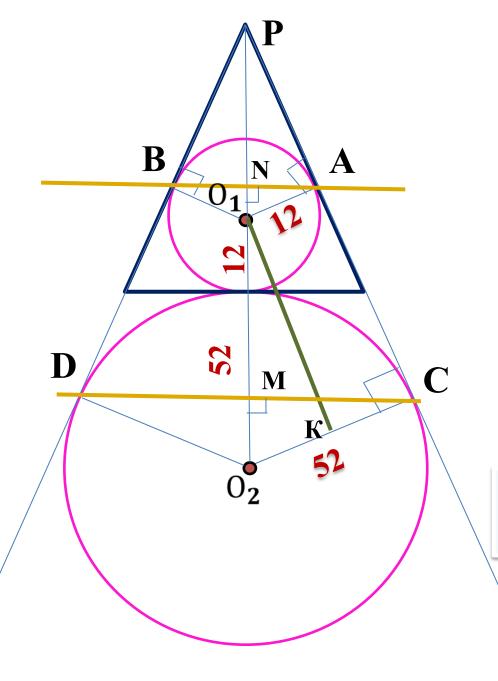
Haŭmu S_{KLMN}



1.
$$S_{ABCD} = \frac{1}{2} BD \cdot AC \cdot \sin \alpha$$

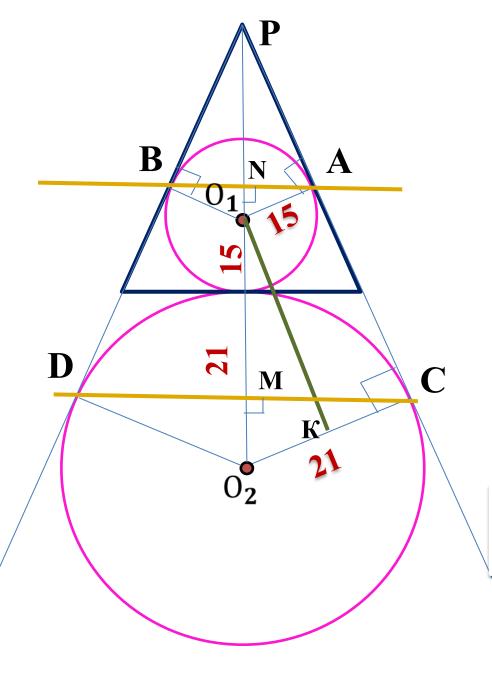
2.
$$S_{KLMN} = \frac{1}{4} BD \cdot AC \cdot \sin \alpha$$

3.
$$\frac{S_{ABCD}}{S_{KLMN}} = \frac{\frac{1}{2}BD \cdot AC \cdot \sin \alpha}{\frac{1}{4}BD \cdot AC \cdot \sin \alpha} = 2$$



Вариант 17 № 26

- 1. $\Pi y cmb O_1 K \parallel AC$, $O_2 K = 40$
- 2. $\Delta O_2 MC \sim \Delta O_1 O_2 K$, $O_2 M = 32,5$
- 2. $\Delta O_2 MC \sim \Delta O_1 NA$, $O_1 N = 7.5$
- 3. MN = 64 32,5 + 7,5 =



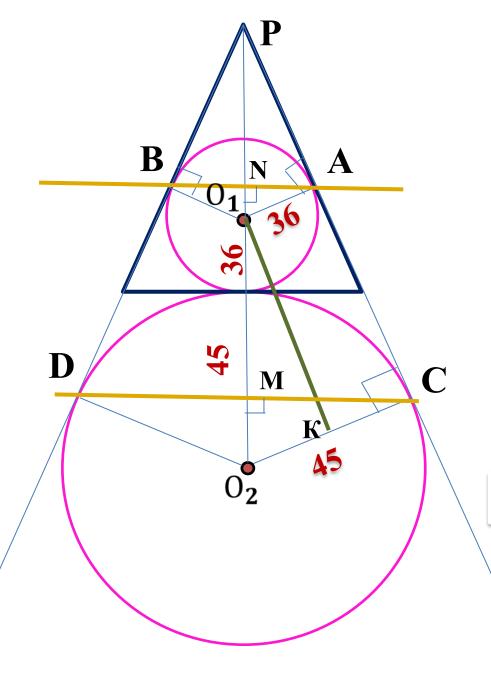
Вариант 18 № 26

1.
$$\Pi$$
ycmb O_1 K \parallel AC, O_2 K = 6

2.
$$\Delta O_2 MC \sim \Delta O_1 O_2 K$$
,
 $O_2 M = 3.5$

2.
$$\Delta O_2 MC \sim \Delta O_1 NA$$
, $O_1 N = 2.5$

3.
$$MN = 36 - 3.5 + 2.5 = 35$$



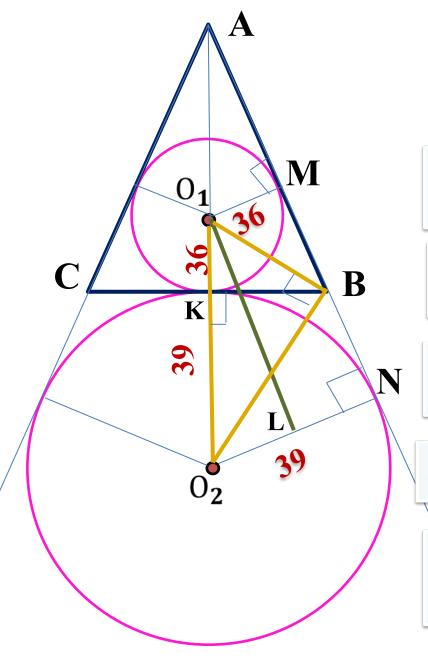
Вариант 19 № 26

1.
$$\Pi$$
ycm $_{\mathbf{0}}$ O $_{\mathbf{1}}$ K \parallel AC, O $_{\mathbf{2}}$ K = $\mathbf{9}$

2.
$$\Delta O_2 MC \sim \Delta O_1 O_2 K$$
,
 $O_2 M = 5$

2.
$$\Delta O_2 MC \sim \Delta O_1 NA$$
, $O_1 N = 4$

3.
$$MN = 81 - 5 + 4 = 80$$



Вариант 20 № 26

План решения.

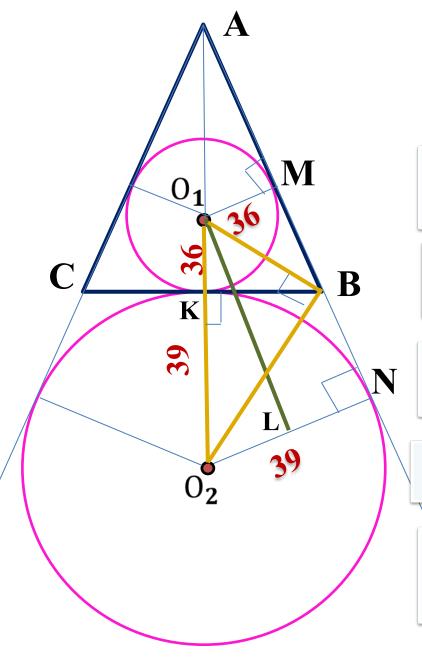
1.
$$\Pi y cmb O_1 L || MN$$
, $O_2 L = 3$, $O_1 L = 6\sqrt{182}$

2.
$$\Delta O_1 O_2 B$$
 — прямоугольный, $KB - высота$, $KB = 3\sqrt{182}$

3.
$$\Delta O_1 O_2 L \sim \Delta$$
 AKB, $AK = 1092$, $AB = 81\sqrt{182}$

4.
$$\frac{AK}{AB} = \sin \angle B$$
, $\sin \angle B = \frac{2\sqrt{182}}{27}$.

5. В ABC по теореме синусов $\frac{AC}{\sin \angle B} = 2R, \qquad R = 546,75$



Вариант 21 № 26

План решения.

1.
$$\Pi y cmb O_1 L | MN$$
, $O_2 L = 3$, $O_1 L = 12\sqrt{39}$

2.
$$\Delta O_1 O_2 B$$
 — прямоугольный, $KB - высота$, $KB = 6\sqrt{39}$

3.
$$\Delta O_1 O_2 L \sim \Delta$$
 AKB, $AK = 936$, $AB = 150\sqrt{39}$

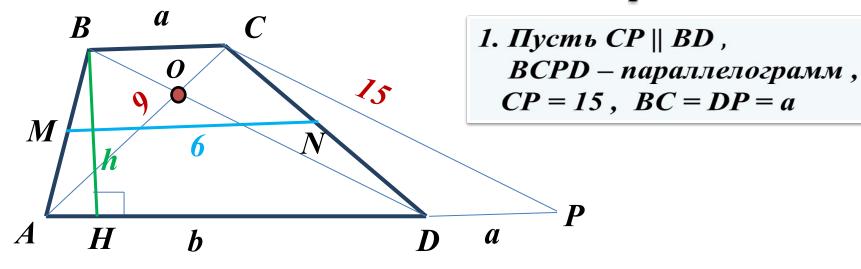
4.
$$\frac{AK}{AB} = \sin \angle B$$
, $\sin \angle B = \frac{4\sqrt{39}}{25}$.

5. В ABC по теореме синусов

$$\frac{AC}{\sin \angle B} = 2R, \qquad R = 468,75$$

$$AC = 9$$
, $BD = 15$
Haŭmu S_{ABCD}

Вариант 22 № 26

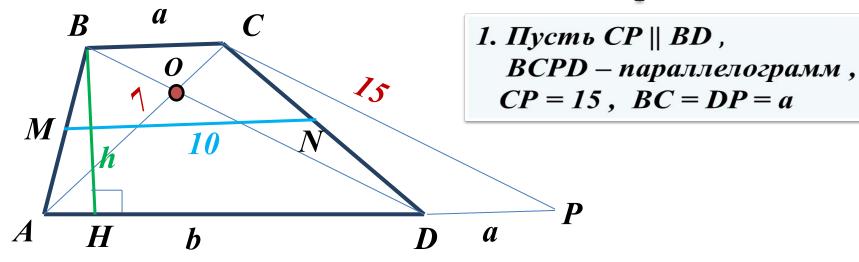


2.
$$S_{ABCD} = \frac{a+b}{2} \cdot h$$
,
 $S_{\Delta ACP} = \frac{a+b}{2} \cdot h$,
 $S_{ABCD} = S_{\Delta ACP}$.

3.
$$a + b = 12$$
 . По формуле Герона $S_{\Delta ACP} = 54 = S_{ABCD}$

$$AC = 7$$
, $BD = 15$
Haŭmu S_{ABCD}

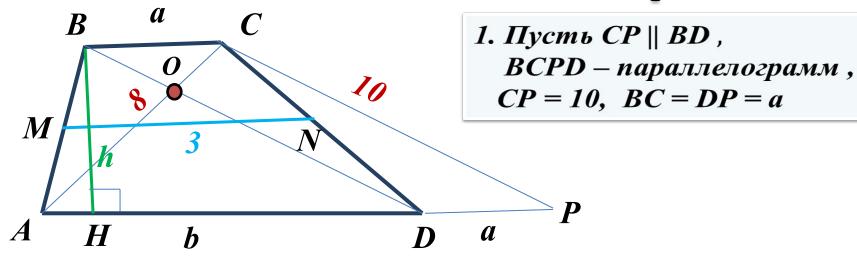
Вариант 23 № 26



2.
$$S_{ABCD} = \frac{a+b}{2} \cdot h$$
,
 $S_{\Delta ACP} = \frac{a+b}{2} \cdot h$,
 $S_{ABCD} = S_{\Delta ACP}$.

3.
$$a + b = 20$$
 . По формуле Герона $S_{\triangle ACP} = 42 = S_{ABCD}$

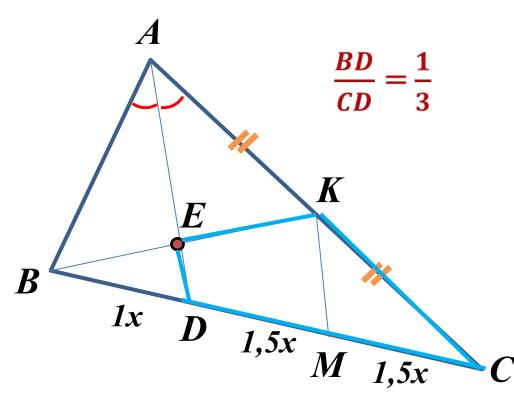
Вариант 24 № 26



2.
$$S_{ABCD} = \frac{a+b}{2} \cdot h$$
,
 $S_{\Delta ACP} = \frac{a+b}{2} \cdot h$,
 $S_{ABCD} = S_{\Delta ACP}$.

3.
$$a + b = 6$$
 . По формуле Герона $S_{\triangle ACP} = 24 = S_{ABCD}$

Вариант 25 № 26

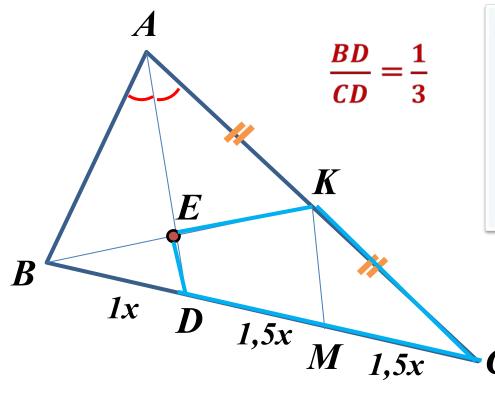


План решения.

1.
$$S_{\Delta KBC} = \frac{1}{2} \cdot 80 = 40$$
,
 $S_{\Delta ABK} = 40$,
 $S_{\Delta ADC} = \frac{3}{4} \cdot 80 = 60$

2.
$$\Pi ycmb KM || AD$$
,
 $BD = x$, $DM = MC = 1.5x$

3. По свойству площадей треугольников, имеющих по одному равному углу $\frac{S_{\Delta ABE}}{S_{\Delta AEK}} = \frac{AE \cdot AB}{AE \cdot AK} = \frac{AB}{AK}$.



4. По свойству биссектрисы

$$\Delta ABC \quad \frac{AB}{AC} = \frac{BD}{DC} = \frac{1}{3},$$

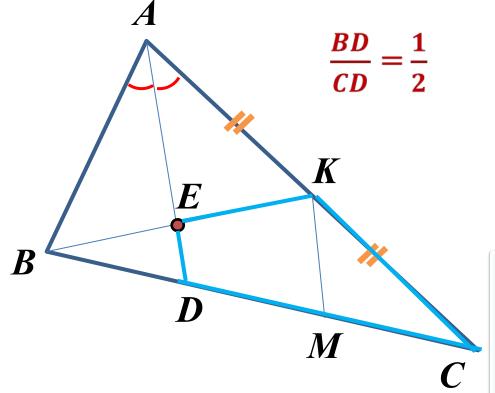
$$\frac{AB}{AK} = \frac{AB}{\frac{1}{2}AC} = \frac{1}{1,5} = \frac{2}{3},$$

$$\frac{S_{\Delta ABE}}{S_{\Delta AEK}} = \frac{2}{3}$$

5.
$$\frac{S_{\Delta ABE}}{S_{\Delta AEK}} = \frac{2}{3} ,$$
$$S_{\Delta AEK} = 40 : 5 \cdot 3 = 24$$

6. $S_{KEDC} = S_{\Delta ADC} - S_{\Delta AEK} = 60 - 24 = 36$

Вариант 26 № 26



План решения.

1.
$$S_{\Delta KBC} = \frac{1}{2} \cdot 60 = 30$$
,
 $S_{\Delta ABK} = 30$,
 $S_{\Delta ADC} = \frac{2}{3} \cdot 60 = 40$

4. По свойству биссектрисы

$$\Delta ABC \quad \frac{BD}{AB} = \frac{DC}{AC} ,$$

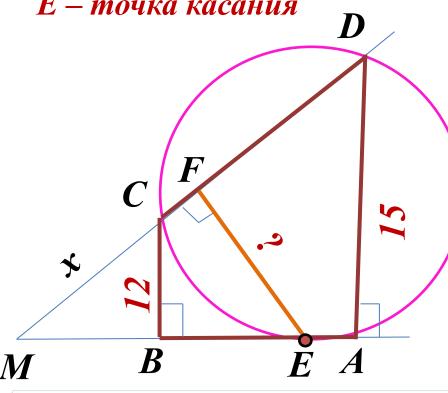
$$\frac{BD}{DC} = \frac{AB}{AC} = \frac{1}{2} , AB = AK ,$$

$$S_{\Delta ABE} = S_{\Delta AEK} = 30 : 2 = 15$$

5.
$$S_{KEDC} = S_{\Delta ADC} - S_{\Delta AEK} = 40 - 15 = 25$$

Вариант 27 № 26

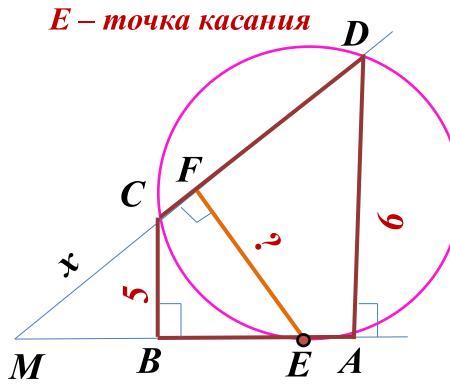
ABCD — трапеция, Е — точка касания



- 1. $\triangle MDA \sim \triangle MCB$. $\Pi ycmb MC = x$, $MD = \frac{5}{4}x$
- 2. По свойству секущей и касательной, проведённых к окружности из одной точки $ME^2 = MD \cdot MC$, $ME = \frac{\sqrt{5}}{2}x$
- 3. В прямоугольном треугольнике МСВ $\sin \angle M = \frac{12}{x}$
- 4. *M*₃ $\triangle MFE$ $FE = ME \cdot \sin \angle M = \frac{\sqrt{5}}{2} x \cdot \frac{12}{x} = 6\sqrt{5}$

План решения.

ABCD – трапеция,



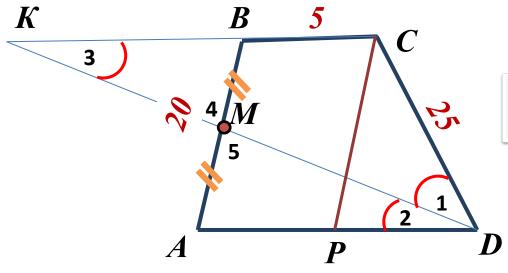
- 1. $\triangle MDA \sim \triangle MCB$, $\Pi ycmb MC = x$, $MD = \frac{6}{5}x$
- 2. По свойству секущей и касательной, проведённых к окружности из одной точки $ME^2 = MD \cdot MC$,

$$ME = \sqrt{\frac{6}{5}}x$$

3. В прямоугольном треугольнике MCB $\sin \angle M = \frac{5}{x}$

4. *U*₃
$$\triangle MFE$$
 $FE = ME \cdot \sin \angle M = \sqrt{\frac{6}{5}}x \cdot \frac{5}{x} = \sqrt{30}$

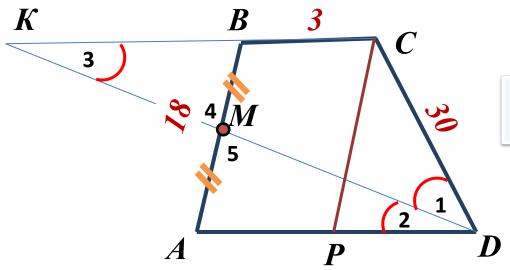
Вариант 29 № 26



- 1. $\Delta KCD равнобедренный,$ <math>KC = CD = 25
 - 2. $\triangle KBM = \triangle AMD$, AD = 20
- 3. Пусть $CP \parallel BA$, ABCP параллелограмм, CP = 20, PD = 15
- 4. В треугольнике CPD CD = 25, CP = 20, PD = 15. По теореме, обратной теореме Пифагора \triangle CPD прямоугольный, CP высота трапеции.

5.
$$S_{ABCD} = \frac{5+20}{2} \cdot 20 = 250$$

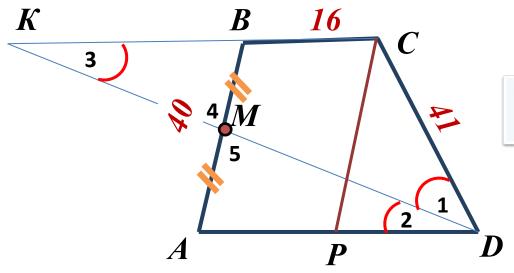
Вариант 30 № 26



- **1.** $\Delta KCD равнобедренный, <math>KC = CD = 30$
 - 2. $\Delta KBM = \Delta AMD$, AD = 27
- 3. Пусть $CP \parallel BA$, ABCP параллелограмм,CP = 18, PD = 24
- 4. В треугольнике CPD CD = 30, CP = 18, PD = 24. По теореме, обратной теореме Пифагора \triangle CPD—прямоугольный, CP—высота трапеции.

5.
$$S_{ABCD} = \frac{3+27}{2} \cdot 18 = 270$$

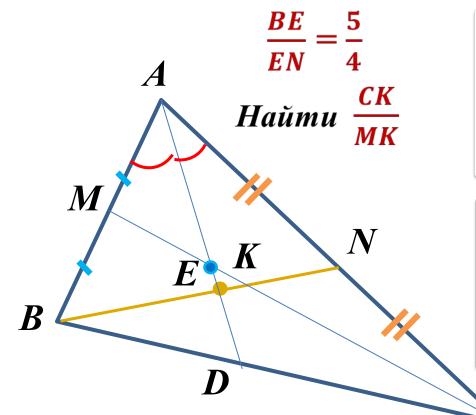
Вариант 31 № 26



- 1. $\Delta KCD равнобедренный,$ <math>KC = CD = 41
 - 2. $\triangle KBM = \triangle AMD$, AD = 25
- 3. Пусть $CP \parallel BA$, ABCP параллелограмм, CP = 40, PD = 9
- 4. В треугольнике CPD CD = 41, CP = 40, PD = 9. По теореме, обратной теореме Пифагора \triangle CPD—прямоугольный, CP—высота трапеции.

5.
$$S_{ABCD} = \frac{16+25}{2} \cdot 40 = 820$$

Вариант 32 № 26



План решения.

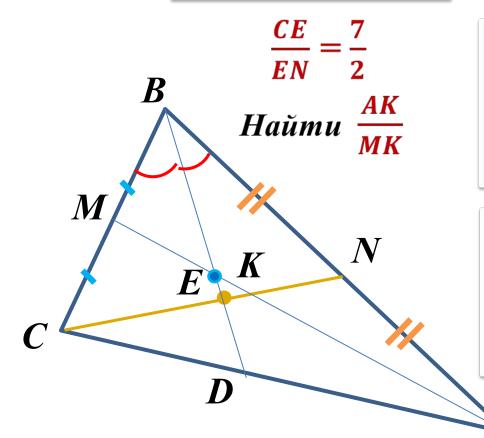
- 1. По свойству биссектрисы $\Delta ABN \quad \frac{BE}{AB} = \frac{EN}{AN}, \quad \frac{BE}{EN} = \frac{AB}{AN},$ $\frac{BE}{EN} = \frac{AB}{\frac{1}{2}AC} = \frac{5}{4}, \quad AB = \frac{5}{8}AC$
- 2. По свойству биссектрисы $\Delta MAC \quad \frac{KC}{AC} = \frac{MK}{AM}, \quad \frac{KC}{MK} = \frac{AC}{AM},$ $\frac{KC}{MK} = \frac{AC}{\frac{1}{2}AB}.$

<u>C</u>

3.
$$\frac{KC}{MK} = \frac{AC}{\frac{1}{2}AB} = \frac{AC}{\frac{1}{2} \cdot \frac{5}{8} AC} = \frac{16}{5}$$

Вариант 33 № 26

План решения.



- 1. По свойству биссектрисы $\Delta CBN \frac{CE}{CB} = \frac{EN}{BN}, \frac{CE}{EN} = \frac{CB}{BN},$ $\frac{CE}{EN} = \frac{CB}{\frac{1}{2}AB} = \frac{7}{2}, CB = \frac{7}{4}AB$
- 2. По свойству биссектрисы $\Delta MAB \frac{AK}{AB} = \frac{MK}{MB}, \quad \frac{AK}{MK} = \frac{AB}{MB}, \quad \frac{AK}{MK} = \frac{AB}{MB}, \quad \frac{AK}{MK} = \frac{AB}{\frac{1}{2}CB}.$

3. $\frac{AK}{117} = \frac{AB}{1} = \frac{AB}{17} = \frac{AB}{17}$

Вариант 34 № 26

План решения.

2. MN— средняя линия $mpaneuuu, MN = \frac{b+a}{2}$.

$$M$$
 56°
 F
 $A = \frac{a}{2} L$
 b

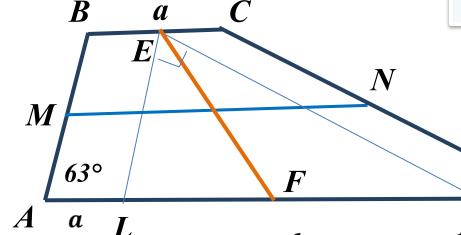
$$\overline{K} = \frac{a}{2}$$

1. Пусть
$$BC = a$$
, $AD = b$,
 $EL || AB$, $EK || CD$.
Докажем, что $\angle LEK = 90^{\circ}$,
 $AL = KD = \frac{a}{2}$, $LK = b - a$,
 $EF = \frac{b-a}{2}$.

3. Pewas cucmemy $\begin{cases}
\frac{b-a}{2} = 13 \\
\frac{b+a}{2} = 16
\end{cases}$ a = 3, b = 29, m.e. BC = 3, AD = 29.

Вариант 35 № 26

$$MN = 13$$
, $EF = 10$
Haŭmu BC u AD



1. Пусть BC = a, AD = b, EL || AB, EK || CD. Докажем, что $\angle LEK = 90^{\circ}$, $AL = KD = \frac{a}{2}$, LK = b - a, $EF = \frac{b-a}{2}$.

План решения.

Замечание: EF = 13 и MN = 10 не может быть.

- 2. MN— средняя линия $mpaneuuu, \ MN = \frac{b+a}{2}.$
- $K = \frac{a}{2}$
 - 3. Решая систему

$$\begin{cases} \frac{b-a}{2} = 10\\ \frac{b+a}{2} = 13 \end{cases}$$

$$a = 3, b = 23, m.e.$$

$$BC = 3, AD = 23.$$

Вариант 36 № 26

MN = 6, EF = 2 Haŭmu BC u AD B a C

План решения.

Замечание: EF = 6 и MN = 2 не может быть.

2. MN— средняя линия mpaneuuu, $MN = \frac{b+a}{2}$.

$$M$$
 53°
 F
 $A = \frac{a}{2} L$
 b

- 1. Пусть BC = a, AD = b, EL || AB, EK || CD.
 Докажем, что $\angle LEK = 90^{\circ}$, $AL = KD = \frac{a}{2}$, LK = b a, $EF = \frac{b-a}{2}$.
- 3. Pewas cucmemy $\begin{cases}
 \frac{b-a}{2} = 2 \\
 \frac{b+a}{2} = 6
 \end{cases}$ a = 4, b = 8, m.e. BC = 4, AD = 8.