
Database Management
System I

Introduction to SQL

Main Textbook

■ Database Systems:
The Complete Book
❑ Hector Garcia-Molina
❑ Jeffrey D. Ullman
❑ Jennifer Widom

2

Alternative Textbook

■ Database Management
Systems
❑ Raghu Ramakrishnan
❑ Johannes Gehrke

3

Goals of Course
■ To obtain a firm background in database

systems, e.g.,
❑ how to talk to database systems in a standard

language
❑ how to improve the efficiency of database

systems
❑ the theories behind database design and some

algorithms behind database implementation
■ Mostly “basic stuff” about databases

4

What will NOT be taught

■ Advanced database technologies
❑ Geographical information systems
❑ Data mining
❑ …
❑ (This is an introductory course only)

■ Specific instructions on how to install and use a specific
database system on a specific platform
❑ Try the user manual or Google

5

Teaching Style

■ There will be a lot of in-lecture exercises

■ Questions will be welcomed

■ Lecture notes will be released on the Drive (at least
several days before lectures)

6

Course Overview

■ What is a database?
■ A large collection of data organized especially for rapid

search and retrieval (as by a computer)
■ What is a database system?

(more formally, a database management system, i.e.,
DBMS)

■ A management system that helps us retrieve information
from databases

7

Database and DBMS

Database

Database
Management
System

User

What is the
average annual

income of a
Kazakhstan tax

payer?KZT *****

8

Tables, Relations, Relational Model

Database

Database
Management
System

User

Taxpayer_ID Annual_Income
51248297 100000
33891634 50000

… …
Income_Table

9

Tables, Relations, Relational Model

Database

Database
Management
System

User

Taxpayer_ID Annual_Income
51248297 100000
33891634 50000

… …
Income_Table

What is the average annual income
of a Kazakhstan tax payer?

???

10

Structured Query Language (SQL)

Database

Database
Management
System

User

Taxpayer_ID Annual_Income
51248297 100000
33891634 50000

… …
Income_Table

SELECT avg(Annual_Income)
FROM Income_Table

11

Structured Query Language (SQL)

Database

Database
Management
System

User

Taxpayer_ID Annual_Income
51248297 100000
33891634 50000

… …
Income_Table

SELECT avg(Annual_Income)
FROM Income_Table

More details
about SQL will
be
covered later
today

12

Database Schema Design

Database

Database
Management
System

User

You should store XXX and YYY
in two different tables, and
blah blah blah..Yes sir!

13

Database Schema Design

■ Assume that we want to capture
parent-child relationships

Taxpayer_ID Annual_Income
51248297 100000
33891634 50000
67904777 70000

… …

14

Database Schema Design

Taxpayer_ID Annual_Income Child_ID
51248297 100000
33891634 50000
67904777 70000

… …

■ Is one column enough?

15

Database Schema Design
Taxpayer_ID Annual_Income Child_ID1 Child_ID2

51248297 100000
33891634 50000
67904777 70000

… …

■ Are two columns enough?
■ Assume that two columns are enough
■ Does everyone have two children?

Schema designs based on the
Entity-Relationship model

16

Course Content

■ SQL
■ Constraints and Triggers
■ Conceptual Design
■ Indices
■ Relation Algebra
■ Query Processing/Optimization
■ Concurrency Control
■ Recovery
■ Current trend (e.g., NOSQL)

Database
Design

Database
Implementation

17

What do you want from a DBMS?
Why do we need it?
• Keep data around (persistent)
• Answer queries (questions) about data
• Update data

•Requirements from high-end applications
�Massive amounts of data (terabytes ~ petabytes)
�High throughput (thousands ~ millions

transactions/min)

18

The Relational Revolution
The Relational Revolution (1970’s)

•IBM and Univ of Berkeley
•A simple data model: Data is stored in relations (tables)
•A declarative query language: SQL

�Programmer specifies what answers a query should return, but
not how the query is executed
�DBMS picks the best execution strategy

•Hide the physical organization of the database from
applications
�Provided only logical view of the data

19

Turing Award!
Edgar C Codd

•Relational model is the dominating technology today
•Graphs/Streams/Arrays are hot wanna-be!

“Relational databases are the
foundation of western civilization.”

Bruce Lindsay
IBM Fellow
IBM Almaden Research Center

20

■ Structured Query Language (SQL)

21

Structured Query Language (SQL)

■ A declarative (computer) language for managing data in a
relational database management system

■ Two parts
❑ Data Definition Language (DDL)

■ Create/Alter/Delete tables
■ Will be discussed in the next week

❑ Data Manipulation Language (DML)
■ Query one or more tables
■ Insert/Delete/Modify tuples in tables
■ Will be discussed in the following

22

Tables in SQL

PName Price Category Manufacturer
iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

Product

Table name Attribute
name

Tuple (i.e. row, record)

Key

23

Data Types in SQL

■ Character strings
❑ CHAR(20)
❑ VARCHAR(50)
❑ …

■ Numbers
❑ INT
❑ FLOAT
❑ …

■ Others
❑ BOOLEAN
❑ DATETIME
❑ …

PName Price Category
iPhone 4 888 Phone
iPad 2 668 Tablet

Milestone 798 Phone
EOS 550D 1199 Camera

Product

24

Simple SQL Query
PName Price Category Manufacturer

iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

Product

PName Price Category Manufacturer
iPhone 4 888 Phone Apple

Milestone 798 Phone Motorola

SELECT *
FROM Product
WHERE Category = ‘Phone’

“selection”

25

Simple SQL Query
PName Price Category Manufacturer

iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

Product

PName Price Category Manufacturer
iPad 2 668 Tablet Apple

EOS 550D 1199 Camera Canon

SELECT *
FROM Product
WHERE Category <> ‘Phone’

26

Simple SQL Query
PName Price Category Manufacturer

iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

Product

PName Price Category Manufacturer
iPhone 4 888 Phone Apple

SELECT *
FROM Product
WHERE Category = ‘Phone’ AND Price > 800

27

Simple SQL Query
PName Price Category Manufacturer

iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

Product

SELECT *
FROM Product
WHERE Category = ‘Tablet’ OR Price > 1000

PName Price Category Manufacturer
iPad 2 668 Tablet Apple

EOS 550D 1199 Camera Canon

28

Simple SQL Query (cont.)
PName Price Category Manufacturer

iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

Product

PName Price Manufacturer
iPhone 4 888 Apple

EOS 550D 1199 Canon

SELECT PName, Price, Manufacturer
FROM Product
WHERE Price > 800

“selection
and

projection”

29

Details

■ SQL is NOT case sensitive (when it comes to keywords
and names)
❑ SELECT = Select = select
❑ Product = product

■ Constants must use single quotes
❑ ‘abc’ – OK
❑ “abc” – NOT OK

30

Patterns for Strings
PName Price Category Manufacturer

iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

Product

PName Price Category Manufacturer
iPhone 4 888 Phone Apple

SELECT *
FROM Product
WHERE PName LIKE ‘iPh%’

% stands for “any string”
31

Patterns for Strings
PName Price Category Manufacturer

iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

Product

PName Price Category Manufacturer
iPhone 4 888 Phone Apple

SELECT *
FROM Product
WHERE PName LIKE ‘%Ph%’

% stands for “any string”
32

Patterns for Strings
PName Price Category Manufacturer

iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

Product

PName Price Category Manufacturer
iPhone 4 888 Phone Apple

SELECT *
FROM Product
WHERE PName LIKE ‘%P%e%’

% stands for “any string”
33

Patterns for Strings
PName Price Category Manufacturer

iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

Product

PName Price Category Manufacturer
iPhone 4 888 Phone Apple

SELECT *
FROM Product
WHERE PName LIKE ‘_Phone 4’

_ stands for “any character”
34

Patterns for Strings
PName Price Category Manufacturer

iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

Product

PName Price Category Manufacturer
iPhone 4 888 Phone Apple

SELECT *
FROM Product
WHERE PName LIKE ‘_Phone__’

_ stands for “any character”
35

Patterns for Strings
PName Price Category Manufacturer

iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

Product

SELECT *
FROM Product
WHERE PName NOT LIKE ‘_Phone__’

36

Eliminating Duplicates
PName Price Category Manufacturer

iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

Product

SELECT Category
FROM Product

Category
Phone
Tablet
Phone

Camera

37

Eliminating Duplicates (cont.)
PName Price Category Manufacturer

iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

Product

SELECT DISTINCT Category
FROM Product

Category
Phone
Tablet
Camera

38

Ordering the Results
PName Price Category Manufacturer

iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

PName Price
Milestone 798

iPad 2 668

SELECT PName, Price
FROM Product
WHERE Price < 800
ORDER BY PName

Product

39

Ordering the Results (cont.)
PName Price Category Manufacturer

iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

PName Price
iPad 2 668

Milestone 798

SELECT PName, Price
FROM Product
WHERE Price < 800
ORDER BY PName DESC

Product

40

Ordering the Results (cont.)
PName Price Category Manufacturer

iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

SELECT PName, Category
FROM Product
WHERE Price < 1000
ORDER BY Category, PName PName Category

Milestone Phone
iPhone 4 Phone
iPad 2 Tablet

Product

41

Ordering the Results (cont.)
PName Price Category Manufacturer

iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

SELECT PName, Category
FROM Product
WHERE Price < 1000
ORDER BY Category DESC,
 PName

PName Category
iPad 2 Tablet

Milestone Phone
iPhone 4 Phone

Product

42

Ordering the Results (cont.)
PName Price Category Manufacturer

iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

SELECT PName, Category
FROM Product
WHERE Price < 1000
ORDER BY Category DESC,
 PName DESC

PName Category
iPad 2 Tablet

iPhone 4 Phone
Milestone Phone

Product

43

Exercise PName Price Category Manufacturer
iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

SELECT DISTINCT Category
FROM Product
ORDER BY Category

Product

?

44

Exercise PName Price Category Manufacturer
iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

Product

Category
Camera
Phone
Tablet

SELECT DISTINCT Category
FROM Product
ORDER BY Category

45

Exercise PName Price Category Manufacturer
iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

SELECT DISTINCT Category
FROM Product
ORDER BY Category
WHERE Price < 1000

Product

?

46

Exercise

■ “WHERE” should always proceed “ORDER
BY”

PName Price Category Manufacturer
iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

SELECT DISTINCT Category
FROM Product
ORDER BY Category
WHERE Price < 1000

Product

Error!

47

Exercise PName Price Category Manufacturer
iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

SELECT DISTINCT Category
FROM Product
ORDER BY PName

Product

?

48

Exercise

■ “ORDER BY” items must appear in the
select list if “SELECT DISTINCT” is
specified

PName Price Category Manufacturer
iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

SELECT DISTINCT Category
FROM Product
ORDER BY PName

Product

Error!

49

Joins

PName Price Category Manufacturer
iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

CName StockPrice Country
Canon 45 Japan

Motorola 40 USA
Apple 374 USA

Company

Product

■ A user wants to know the names and prices
of all products by Japan companies. How?

50

Joins

PName Price Category Manufacturer
iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

CName StockPrice Country
Canon 45 Japan

Motorola 40 USA
Apple 374 USA

Company

Product

■ SELECT PName, Price
FROM Product, Company
WHERE Country = ‘Japan’
 AND Manufacturer = CName

51

Joins

■ Find the names of the persons who work
for companies in USA

■ SELECT PName
FROM Person, Company
WHERE Country = ‘USA’
 AND WorksFor = CName

PName Address WorksFor
… … …

CName Address Country
… …

CompanyPerson

52

Joins

■ Find the names the persons who work for
companies in USA, as well as their company
addresses

■ SELECT PName, Address
FROM Person, Company
WHERE Country = ‘USA’
 AND WorksFor = CName

Error!

PName Address WorksFor
… … …

CName Address Country
… …

CompanyPerson

53

Joins

PName Address WorksFor
… … …

CName Address Country
… …

CompanyPerson

■ Find the names the persons who work for
companies in USA, as well as their company
addresses

■ SELECT PName, Company.Address
FROM Person, Company
WHERE Country = ‘USA’
 AND WorksFor = CName

54

Joins

■ Find the names the persons who work for
companies in USA, as well as their company
addresses

■ SELECT PName, Company.Address
FROM Person, Company
WHERE Country = ‘USA’
 AND CName = CName

Error!

PName Address CName
… … …

CName Address Country
… …

CompanyPerson

55

Joins

■ Find the names the persons who work for
companies in USA, as well as their company
addresses

■ SELECT PName, Company.Address
FROM Person, Company
WHERE Country = ‘USA’
 AND Person.CName = Company.CName

PName Address CName
… … …

CName Address Country
… …

CompanyPerson

56

Joins

■ Find the names the persons who work for
companies in USA, as well as their company
addresses

■ SELECT X.PName, Y.Address
FROM Person AS X, Company AS Y
WHERE Y.Country = ‘USA’
 AND X.CName = Y.CName

PName Address CName
… … …

CName Address Country
… …

CompanyPerson

57

Joins

■ Find the names the persons who work for
companies in USA, as well as their company
addresses

■ SELECT X.PName, Y.Address
FROM Person X, Company Y
WHERE Y.Country = ‘USA’
 AND X.CName = Y.CName

PName Address CName
… … …

CName Address Country
… …

CompanyPerson

58

Exercise

PName Price Category Manufacturer
… … … …

CName StockPrice Country
… … …

Company

Product

■ Exercise: Find the names of the companies in
China that produce products in the ‘tablet’
category

■ SELECT DISTINCT CName
FROM Company, Product
WHERE Manufacturer = CName
 AND Country = ‘China’
 AND Category = ‘Tablet’

59

Exercise

PName Price Category Manufacturer
… … … …

CName StockPrice Country
… … …

Company

Product

■ Exercise: Find the names of the companies in
China that produce products in the ‘tablet’ or
‘phone’ category

■ SELECT DISTINCT CName
FROM Company, Product
WHERE Manufacturer = CName
 AND Country = ‘China’
 AND (Category = ‘Tablet’
 OR Category = ‘Phone’)

60

Exercise

■ Exercise: Find the manufacturers that
produce products in both the ‘tablet’ and
‘phone’ categories

■ SELECT DISTINCT Manufacturer
FROM Product
WHERE Category = ‘Tablet’
 AND Category = ‘Phone’

Error!

Product

PName Price Category Manufacturer
iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

61

Exercise

Product

■ Exercise: Find the manufacturers that produce
products in both the ‘tablet’ and ‘phone’ categories

■ SELECT DISTINCT X.Manufacturer
FROM Product AS X, Product AS Y
WHERE X.Manufacturer = Y.Manufacturer
 AND X.Category = ‘Tablet’
 AND Y.Category = ‘Phone’

PName Price Category Manufacturer
iPhone 4 888 Phone Apple
iPad 2 668 Tablet Apple

Milestone 798 Phone Motorola
EOS 550D 1199 Camera Canon

62

Subqueries

■ A subquery is a SQL query nested inside a larger query
■ Queries with subqueries are referred to as nested queries
■ A subquery may occur in
❑ SELECT
❑ FROM
❑ WHERE

SQL subquery

SQL subquery

63

A special subquery: Scalar Subquery

Example Query
From Sells(bar, beer, price), find the bars that serve
Heineken for the same price Ku De Ta charges for Bud.

64

Scalar Subquery
• return a single value which is then used in a comparison.
• If query is written so that it expects a subquery to return a

single value, and it returns multiple values or no values, a
run-time error occurs.

Example Scalar Subquery

Bar Beer Price
Clinic Heineken 8.00
Clinic Bud 6.60
Ku De Ta Bud 7.90
MOS Heineken 7.90
Ku De Ta Heineken 8.00

Price
7.90

SELECT price
FROM Sells
WHERE bar = `Ku De Ta’

AND beer = `Bud’;

SELECT bar
FROM Sells
WHERE beer = `Heineken’

AND price = 7.90;

Bar
MOS

Sells

65

Find the price Ku De Ta
charges for Bud.

Find the bars that serve Heineken at that price.

Example Scalar Subquery

SELECT bar
FROM Sells
WHERE beer = ‘Heineken’ AND

price = (SELECT price
 FROM Sells
 WHERE bar = ‘Ku De Ta’

 AND beer = ‘Bud’);

66

Subqueries in FROM

■ Find all products in the ‘phone’ category with
prices under 1000

■ SELECT X.PName
FROM (SELECT *
 FROM Product
 WHERE category = ‘Phone’) AS X
WHERE X.Price < 1000

PName Price Category CName
… … … …

CName StockPrice Country
… … …

Company

Product

67

Subqueries in FROM (cont.)

■ Find all products in the ‘phone’ category with
prices under 1000

■ SELECT PName
FROM Product
WHERE Category = ‘Phone’
 AND Price < 1000

■ This is a much more efficient solution

PName Price Category CName
… … … …

CName StockPrice Country
… … …

Company

Product

68

Subqueries in WHERE (cont.)

■ Find all companies that make some products with
price < 100

■ SELECT DISTINCT CName
FROM Company AS X
WHERE X.CName IN

 (SELECT Y.CName
 FROM Product AS Y
 WHERE Y.Price < 100)

PName Price Category CName
… … … …

CName StockPrice Country
… … …

Company

Product

69

Subqueries in WHERE (cont.)

■ Find all companies that make some products with price <
100

■ SELECT DISTINCT CName
FROM Company AS X
WHERE EXISTS

 (SELECT * FROM Product AS Y
 WHERE X.CName = Y.Cname
 AND Y.Price < 100)

PName Price Category CName
… … … …

CName StockPrice Country
… … …

Company

Product

•A nested query is correlated with the outer query if it contains a
reference to an attribute in the outer query.

•A nested query is correlated with the outside query if it must be
re-computed for every tuple produced by the outside query. 70

Subqueries in WHERE (cont.)

■ Find all companies that make some products with
price < 100

■ SELECT DISTINCT CName
FROM Company AS X
WHERE X.CName IN

 (SELECT *
 FROM Product AS Y
 WHERE Y.Price < 100)

PName Price Category CName
… … … …

CName StockPrice Country
… … …

Company

Product

Error!

•The number of attributes in the SELECT clause in the subquery must
match the number of attributes compared to with the comparison operator. 71

Subqueries in WHERE (cont.)

■ Find all companies that make some products
with price < 100

■ SELECT DISTINCT CName
FROM Company AS X
WHERE 100 > ANY

 (SELECT Price FROM Product AS Y
 WHERE X.CName = Y.Cname)

PName Price Category CName
… … … …

CName StockPrice Country
… … …

Company

Product

72

Subqueries in WHERE (cont.)

■ Find all companies that make some products
with price < 100

■ SELECT DISTINCT CName
FROM Product
WHERE Price < 100

■ This is more efficient than the previous
solutions

PName Price Category CName
… … … …

CName StockPrice Country
… … …

Company

Product

73

Operators in Subqueries
IN
<tuple> IN <relation> is
true if and only if the
tuple is a member of the
relation.

EXISTS
• EXISTS(<relation>) is true if and

only if the <relation> is not empty.
• Returns true if the nested query

has 1 or more tuples.

ANY
x = ANY(<relation>) is a
boolean cond. meaning
that x equals at least one
tuple in the relation.

ALL
x <> ALL(<relation>) is true if and

only if for every tuple t in the
relation, x is not equal to t.

Note
The keyword NOT can proceed any of the operators (s NOT
IN R) 74

Avoiding Nested Queries
■ In general, nested queries tend to be more

inefficient than un-nested queries
❑ query optimizers of DBMS do not generally

do a good job at optimizing queries
containing subqueries

■ Therefore, they should be avoided
whenever possible

■ But there are cases where avoiding nested
queries is hard…

75

Subqueries in WHERE (cont.)

■ Find all companies that do not make any product
with price < 100

■ SELECT DISTINCT CName
FROM Company AS X
WHERE NOT EXISTS

 (SELECT * FROM Product AS Y
 WHERE X.CName = Y.Cname
 AND Y.Price < 100)

PName Price Category CName
… … … …

CName StockPrice Country
… … …

Company

Product

76

Subqueries in WHERE (cont.)

■ Find all companies that do not make any
product with price < 100

■ SELECT DISTINCT CName
FROM Company AS X
WHERE 100 <= ALL

 (SELECT Price FROM Product AS Y
 WHERE X.CName = Y.Cname)

PName Price Category CName
… … … …

CName StockPrice Country
… … …

Company

Product

77

Subqueries in WHERE (cont.)

■ Find all companies that does not make any
products with price < 100

■ SELECT DISTINCT CName
FROM Company AS X
WHERE 100 <= ALL

 (SELECT Price FROM Product AS Y
 WHERE X.CName = Y.Cname)

PName Price Category CName
… … … …

CName StockPrice Country
… … …

Company

Product

78

Exercise

■ Find all drinkers that frequent some bar that
serves some beer they like

■ SELECT DINSTINT F.Drinker
FROM Likes AS L, Frequent AS F,
 Serve AS S
WHERE L.Drinker = F.Drinker
 AND F.Bar = S.Bar
 AND L.Beer = S.Beer

Drinker Beer
… …

Likes
Drinker Bar

… …

Frequent
Bar Beer
… …

Serves

79

Exercise

■ Find all drinkers that frequent some bar that does
not serve any beer they like

■ SELECT DISTINCT F.Drinker
FROM Frequent AS F, Serves AS S
WHERE F.Bar = S.Bar AND NOT EXIST
 (SELECT *
 FROM Likes as L
 WHERE L.Beer = S.Beer
 AND L.Drinker = F.Drinker)

Drinker Beer
… …

Likes
Drinker Bar

… …

Frequent
Bar Beer
… …

Serves

80

Exercise

■ Find all drinkers that do not frequent any bar that
serve some beer they like

■ SELECT DISTINCT F.Drinker
FROM Frequent AS F
WHERE NOT EXIST
 (SELECT *
 FROM Likes AS L, Serves AS S
 WHERE L.Beer = S.Beer
 AND L.Drinker = F.Drinker
 AND S.Bar = F.Bar)

Drinker Beer
… …

Likes
Drinker Bar

… …

Frequent
Bar Beer
… …

Serves

81

Roadmap --SQL

82

■ Table
■ SELECT

FROM
WHERE

■ ORDER BY
■ Joins
■ Subqueries
■ Aggregations
■ UNION, INTERSECT, EXCEPT
■ NULL
■ Outerjoin
■ Insert/Delete tuples
■ Create/Alter/Delete tables
■ View

Exercise

■ Find all drinkers that frequent some bar that does not
serve any beer they like

■ SELECT DISTINCT F.Drinker
FROM Frequent AS F
WHERE NOT EXIST
 (SELECT *
 FROM Serves as S, Likes as L
 WHERE L.Beer = S.Beer
 AND L.Drinker = F.Drinker

 AND F.Bar = S.Bar)

Drinker Beer
John A2

Likes
Drinker Bar

John B1

Frequent
Bar Beer
B1 A1

Serves

83

Exercise

■ Find all drinkers that do not frequent any bar that
serve some beer they like

■ SELECT DISTINCT F.Drinker
FROM Frequent AS F
WHERE NOT EXIST
 (SELECT *
 FROM Likes AS L, Serves AS S
 WHERE L.Beer = S.Beer
 AND L.Drinker = F.Drinker
 AND S.Bar = F.Bar)

Drinker Beer
… …

Likes
Drinker Bar

… …

Frequent
Bar Beer
… …

Serves

84

