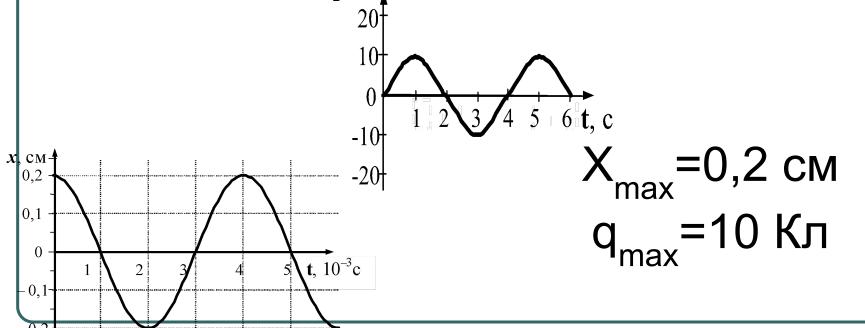

Гармонические колебания

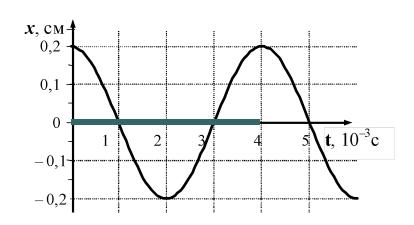
Колебательные системы

Колебания – ...

процесс, который частично или полностью повторяется через некоторый промежуток времени.

Например, ...

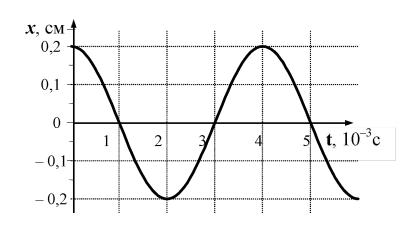



Амплитуда- ...

максимальное значение меняющейся величины. *q*,Кл,

Период- ...

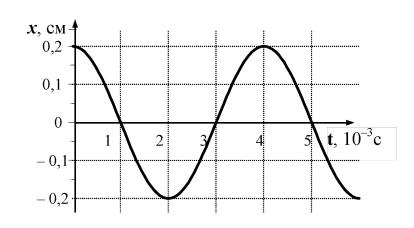
время, за которое тело совершает одно полное колебание.

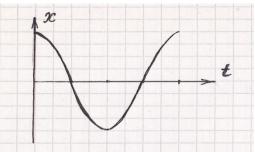


$$T = 4.10^{-3} c$$

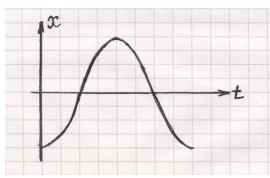
Частота- ...

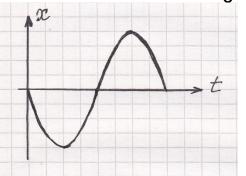
число полных колебаний, совершенных за единицу времени.

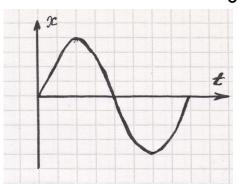

$$v = \frac{1}{T}$$
1
 $v = \frac{1}{T}$
1
 $v = \frac{1}{1}$
 $v = \frac{1}{1}$
 $v = \frac{1}{1}$
 $v = \frac{1}{1}$


Циклическая частота - ...

физическая величина, численно равная числу колебаний за 2π секунд


 ω =2 π 250=500 π рад/с

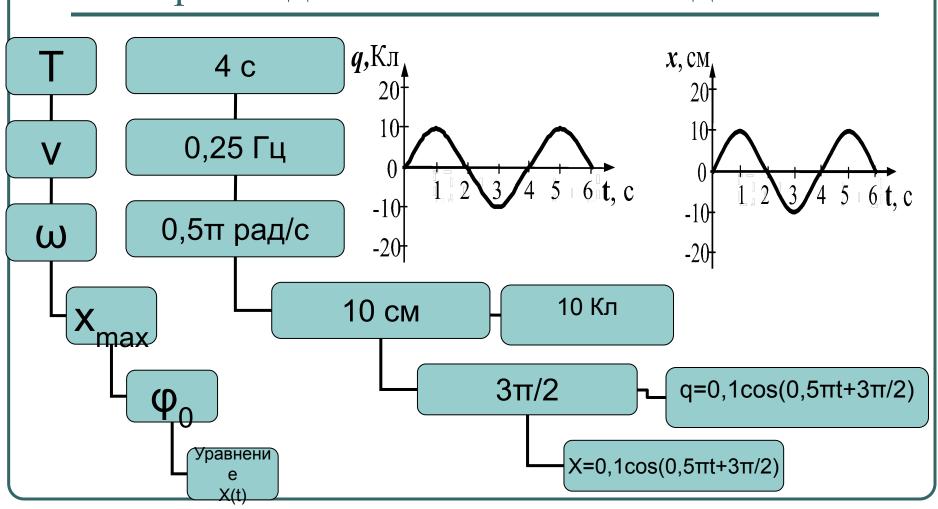

Начальная фаза ϕ_0 =0


Начальная фаза $\phi_0 = \pi$

Начальная фаза $\phi_0 = \pi/2$

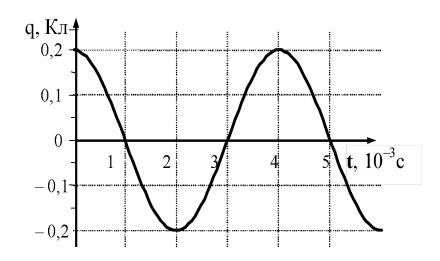
Начальная фаза $\phi_0 = 3\pi/2$

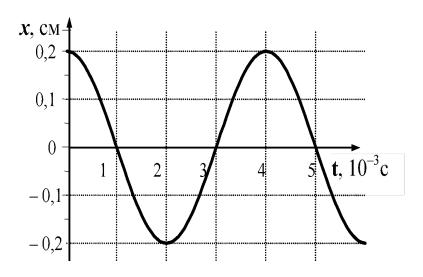
Уравнение гармонических колебаний


Гармонические колебания — это колебания, происходящие по закону синуса или косинуса

$$x = x_m \cos (\omega t + \varphi_0)$$

 $q = q_m \cos (\omega t + \varphi_0)$


 $X_{\rm m}$ – амплитуда колебаний qm – амплитуда колебаний ϕ_0 – начальная фаза колебаний ω – циклическая частота ω =2 π v ϕ = ωt + ϕ_0 – фаза колебаний в


данный момент времени

Игра «Один за всех и все за одного»

выполнить задания по карточкам

Сравнительная таблица

Механика	Электродинамика	
Смещение (координата) X	Электрический заряд q	
Уравнение зависимости x(t).	Уравнение зависимости q(t).	
Скорость V	Мгновенное значение силы тока I	
Уравнение зависимости v(t).	Уравнение зависимости i(t).	
Ускорение а	Скорость изменения силы тока (ЭДС	
Уравнение зависимости a(t).	самоиндукции)	
	Уравнение зависимости e(t).	
Период колебаний		
Пружинного маятника	В колебательном контуре, формула Томсона	
Графики гармонических колебаний		
График x(t).	График q(t).	
График v(t).	График i(t).	
График a(t).	График e(t).	
Закон сохранения энергии в колебательном процессе:		

Проверка:

Механика	Электродинамика
Смещение (координата) X Уравнение зависимости $\mathbf{x}(\mathbf{t})$. $\mathbf{x} = \mathbf{x}_m Cos W_0 t$	Электрический заряд q уравнение зависимости $q(t)$. $q = q_m Cos W_0 t$
Скорость V=X' Уравнение зависимости $v(t)$. $V = V_m Cos(W_0 t + \frac{\Pi}{2})$	Мгновенное значение силы тока $i=q',$ Уравнение зависимости $i(t)$. $i=I_{m}Cos(W_{0}t+\frac{\Pi}{2})$ Скорость изменения силы тока (ЭДС самоиндукции)
Ускорение a=V'=X'' Уравнение зависимости $a(t)$. $a_x = a_m Cos(W_0 t + \Pi)$	Скорость изменения силы тока (ЭДС самоиндукции) $e=i'=q''$ Уравнение зависимости $e(t)$. $\varepsilon_{is}=\varepsilon_{ism}Cos(W_0t+\Pi)$

Пружинного маятника

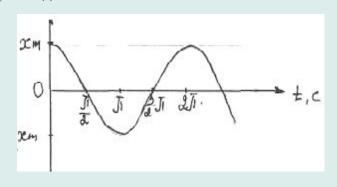
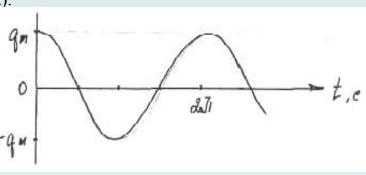
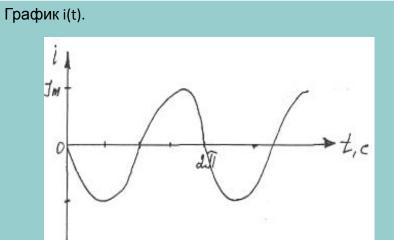
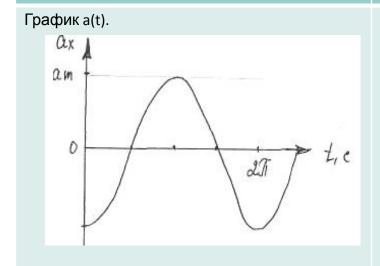
$$T = 2\Pi \sqrt{\frac{m}{k}}$$

Период колебаний

В колебательном контуре, формула Томсона $T=2\Pi\sqrt{L\cdot C}$

Графики гармонических колебаний

График x(t).

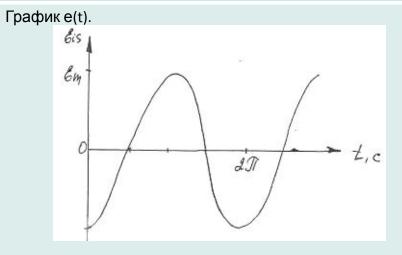

График q(t).

График v(t).

Проверка:

Механика	Электродинамика
Закон сохранения энергии в колебательном процессе:	Закон сохранения энергии в колебательном процессе:
$E = \frac{mv^2}{2}$	$W = \frac{LI^2}{2}$
$E = \frac{kx^2}{2}$	$W = \frac{q^2}{2c}$

Использованные материалы

- При создании презентации использовались иллюстрации
- «Механические колебательные системы»
- «Графики координаты x (t), скорости υ (t) и ускорения a (t) тела, совершающего гармонические колебания»

(http://physics.ru/courses/op25part1/content/chapter2/section/paragraph1/theory.html)