Скажи мне – и я все забуду,

Покажи мне – и я запомню,

Дай мне действовать самому – и я научусь.

Утро

Рождённый пустыней,

Колеблется звук,

Колеблется синий на нитке паук.

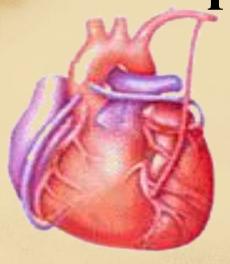
Колеблется воздух,

Прозрачен и чист,

В сияющих звёздах колеблется лист.

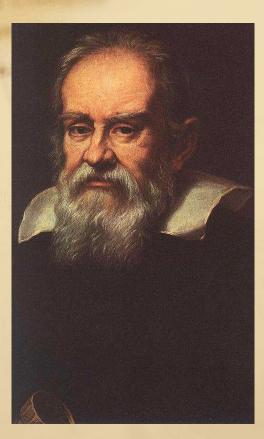
Н.А. Заболоцкого

Свободные механические колебания


Мир колебаний

- Колебания один из самых распространенных процессов в природе и технике;
- крылья насекомых и птиц в полете;
- деревья, высотные здания и высоковольтные провода под действием ветра;
- маятник заведенных часов и автомобиль на рессорах во время движения;
- уровень реки в течение года и температура человеческого тела при болезни.

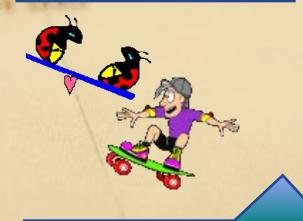
Колебания в живых организмах


сердце

легкие

Галилео Галилей -великий итальянский ученый

Уже в студенческие годы Галилей увлекся изучением колебаний. Он обнаружил, что колебания маятника не зависят от его массы, а определяются длиной подвеса. Сохранилось предание о том, как молодой студент медицинского факультета Галилео Галилей в одно из воскресений 1583 года с интересом следил за качаниями зажженных лампад в церкви. По ударам пульса он определил время, необходимое для полного размаха лампад.


Христиан Гюйгенс – голландский физик, математик, механик, астроном

Опираясь на исследования Галилея, он решил ряд задач механики. В 1656 году в возрасте 27 лет им были сконструированы первые маятниковые часы со спусковым механизмом.

Виды колебаний

Механические

Электромагнитные

Термодинамические

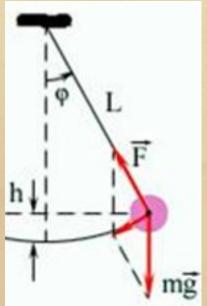
Химические

<u>Колебательное колебание</u> — это движение, которое точно или приблизительно повторяются через определенные интервалы времени.

Механические колебания

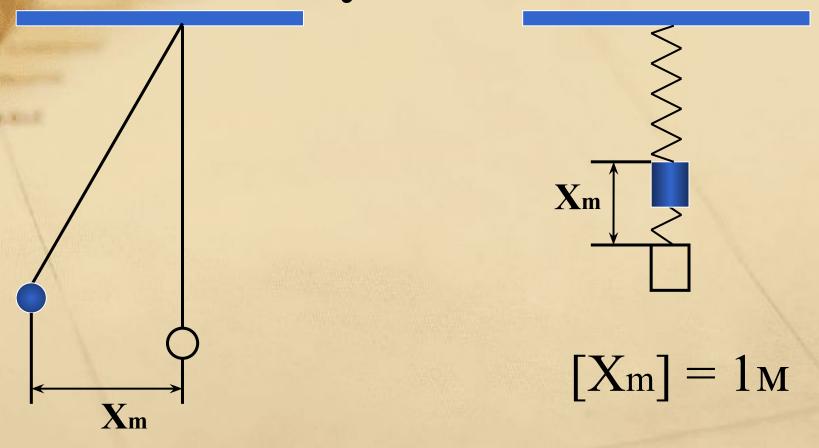
СВОБОДНЫЕ

это колебания, происходящие под действием внутренних сил после того, как система была выведена из состояния равновесия.


ВЫНУЖДЕННЫЕ

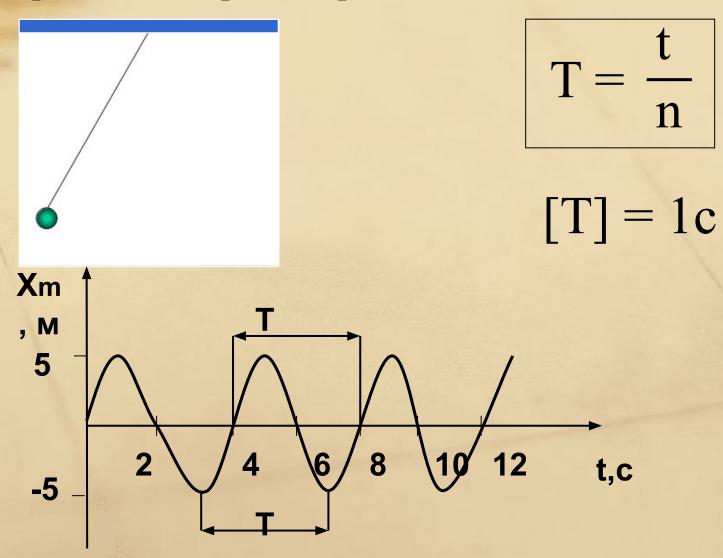
это колебания, происходящие под действием внешних сил.

Колебательная система — это система тел, которая способна совершать свободные колебания


Условия возникновения свободных колебаний:

- 1.Тело должно быть первоначально выведено из положения равновесия.
- 2. Равнодействующая всех сил должна быть отличной от нуля и направленной к положению равновесия.
- 3. Трение в системе должно быть мало.
- 4. Существует одно положение равновесия в котором равнодействующая всех сил равна нулю.

Величины характеризующие колебательное движение


Амплитуда колебаний

Амплитуда — это модуль наибольшего значения изменяющейся величины.

Период

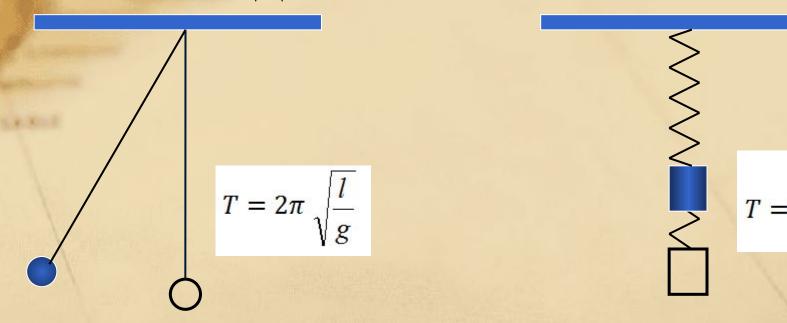
- это время, за которое совершается одно колебание.

Частота

- это число колебаний совершаемых за 1 с.

$$v = \frac{n}{t}$$

$$[v] = 1 \Gamma$$
ц


Единица измерения названа так в честь немецкого физика Генриха Герца

1Гц – это одно колебания в секунду.

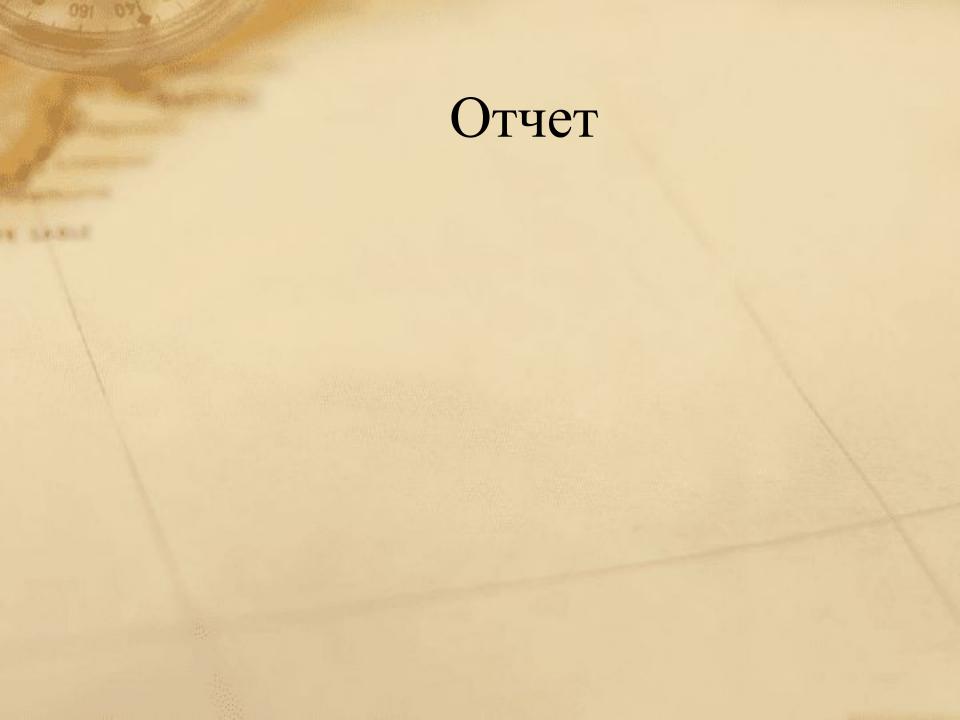
Примерно с такой частотой бьётся человеческое сердце

$$v = \frac{1}{T}$$

Виды маятников

Математический

-модель колебательной системы; представляет собой небольшой груз, подвешенный на длинной нити.


Пружинный — модель колебательной системы; груз, прикрепленный к пружине

Работа в группах

Физкультминутка

Колебательные движения головы влево - вправо (5 раз) Вращательное движение головы, подбородком касаясь груди влево - вправо (5 раз) Наклоны влево - вправо (5 раз)

Обобщение результатов выполнения исследовательских заданий

Математический маятник	Пружинный маятник
При увеличении длины нити период колебаний увеличивается	При увеличении коэффициента жесткости пружины период колебаний уменьшается
Период колебаний не зависит ассы груза	При увеличении массы груза период колебаний увеличивается
Период колебаний <a block"="" href="https://www.news.news.news.news.news.news.news.n</th><th>Период колебаний _ не зависит плитуды</th></tr><tr><th><math display=">T = 2\pi \sqrt{\frac{l}{g}}	$T = 2\pi \sqrt{\frac{m}{k}}$

Тест

Проверка теста

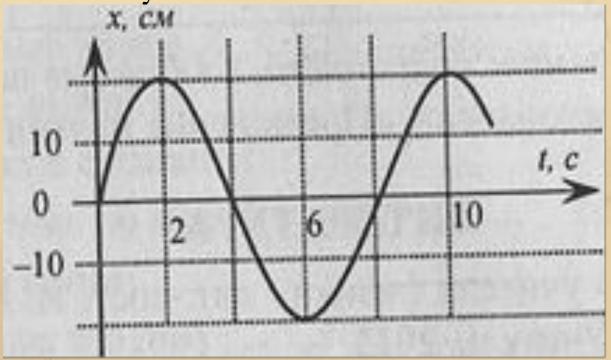
$$3 - 6$$

$$4 - 6$$

$$6-6$$

$$8 - a$$

$$9 - 6$$


$$10 - a$$

$$11 - a$$

$$12 - a$$

Задача №1

По графику, приведённому на рисунке, найти амплитуду, период и частоту колебаний.

Ответ 0,2 м; 8 с; 0,125 Гц.

Задача №2

В Исаакиевском соборе в Петербурге висел маятник с длиной подвеса 98 м. Чему равен период его колебаний? Сколько колебаний он совершит за 1 минуту?

Ответ 20 с, 3 колебания.

Домашнее задание:

- 1. §18-20, знать понятия,
- 2. Составить 2 задачи на тему «Механические колебания.».

Сегодня на уроке:

- Чему я научился на уроке?
- Что нового я узнал на уроке?
- Что мне больше всего запомнилось на уроке?
- С какими трудностями я столкнулся при решении задач?