Распределение Максвелла

Практическое занятие

$$F(|\upsilon|) = f(\upsilon)4\pi\upsilon^{2} = \left(\frac{m_{0}}{2\pi kT}\right)^{\frac{3}{2}} \exp\left(-\frac{m_{0}\upsilon^{2}}{2kT}\right) 4\pi\upsilon^{2}$$

1.(5.49) Найти число молекул водорода в объеме V=1 см³, если давление P=200 мм рт. ст., а средняя квадратичная скорость его молекул при данных условиях <U_{ск}>=2,4·10³ м/с. Решение.

Дано V=1 см³ P=200 мм рт. ст., <U_{ск}>=2,4 · 10³ м/с

N=?

$$N = \frac{m}{\mu} N_A \qquad \qquad \upsilon_{c\kappa} = \sqrt{1}$$

$$PV = \frac{m}{\mu}RT \qquad \frac{m}{\mu} = \frac{PV}{RT}$$

$$RT = \frac{(\langle \upsilon_{c\kappa} \rangle)^2 \mu}{3} \qquad N = \frac{3N_A \cdot PV}{(\upsilon_{c\kappa})^2 \mu}$$

$$N = \frac{3 \cdot 6,02 \cdot 10^{23} \cdot 26,6 \cdot 10^{3} \cdot 10^{-6}}{(2,4)^{2} \cdot 10^{6} \cdot 2 \cdot 10^{-3}} = 4,17 \cdot 10^{18} \approx 4,2 \cdot 10^{18}$$

Omeem: N=4,2 · 10¹⁸.

2.(5.50) Плотность некоторого газа ρ=6·10⁻² кг/м³, а средняя квадратичная скорость его молекул <υ_{ск}>=500 м/с. Найти давление Р, которое газ оказывает на стенки сосуда.

Дано $\rho=6\cdot 10^{-2}\,\text{кг/м}^3 \qquad \rho=\frac{m}{V}$ < $\cup_{\text{ck}}>=500\,\text{м/c}$

$$\rho = \frac{m}{V} \qquad \qquad \upsilon_{c\kappa} = \sqrt{\frac{3RT}{\mu}}$$

$$PV = \frac{m}{\mu}RT$$

$$P = \frac{m}{V} \cdot \frac{RT}{\mu} = \rho \cdot \frac{RT}{\mu}$$

$$\frac{RT}{\mu} = \frac{(\upsilon_{c\kappa})^2}{3} \qquad P = \frac{\rho(\upsilon_{c\kappa})^2}{3}$$

$$P = \frac{6 \cdot 10^{-2} \cdot 25 \cdot 10^4}{3} = 5 \cdot 10^3 (\Pi a)$$

Ответ: P=5 · 10³ Па.

3.(5.56) 1) Найти среднюю квадратичную скорость молекул газа, плотность которого при давлении Р=750 мм рт. ст. равна р=8,2·10⁻² кг/м³. 2) Чему равна молярная масса этого газа, если значение плотности дано для температуры t=17°C?

Дано $\rho = 8,2 \cdot 10^{-2} \, \text{K} \, \text{F/M}^3$ $P = 750 \cdot 133 =$ $= 99,75 \cdot 10^3 (\Pi a)$ T = 17 + 273 = 290(K)

Решение.

$$\upsilon_{c\kappa} = \sqrt{\frac{3RT}{\mu}}$$

$$\rho = \frac{m}{V}$$

$$PV = \frac{m}{\mu}RT$$

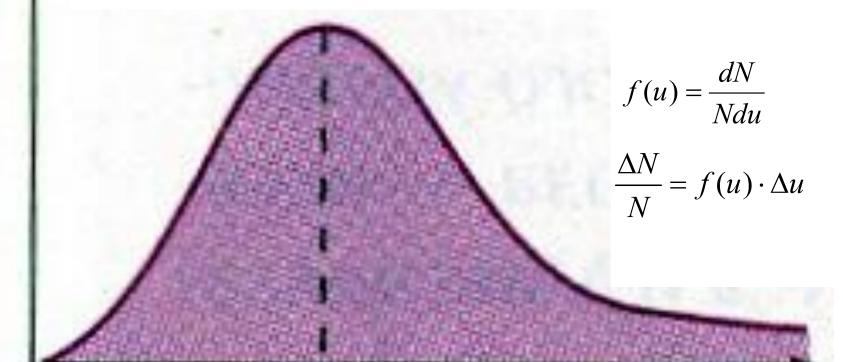
$$T \qquad \frac{\pi}{\mu} = \frac{T}{m} = \frac{T}{m}$$

$$\rho = \frac{m}{V} \qquad \mu = \frac{3RT}{(v_{ck})^2}$$

$$\upsilon_{c\kappa} = ?$$
 $\mu = ?$

$$\upsilon_{c\kappa} = \sqrt{\frac{3P}{\rho}}$$

$$\mu = \frac{RT\rho}{P}$$


$$\upsilon_{c\kappa} = \sqrt{\frac{3 \cdot 99,75 \cdot 10^3}{8,2 \cdot 10^{-2}}} = 1,91 \cdot 10^3 (\frac{M}{c})$$

$$\mu = \frac{8,31 \cdot 290 \cdot 8,2 \cdot 10^{-2}}{99,75 \cdot 10^{3}} = 1,98 \cdot 10^{-3} \left(\frac{\text{K2}}{\text{MOЛb}} \right)$$

Ответ: 1) <U_{Ск}>=1,9 \cdot 10³ м/с; 2) M=2 \cdot 10⁻³ кг/моль.

$$F(|v|)dv = \left(\frac{m_0}{2\pi kT}\right)^{\frac{3}{2}} \exp\left(-\frac{m_0v^2}{2kT}\right) 4\pi v^2 dv$$

$$f(u)dv = \frac{4}{\sqrt{\pi}}u^2 e^{-u^2} du \qquad u = \frac{v}{v_e}$$

1

U

Значения функции f(u)

u	f(u)	u	f(u)	u	f(u)
0	0	0,9	0,81	1,8	0,29
0,1	0,02	1,0	0,83	1,9	0,22
0,2	0,09	1,1	0,82	2,0	0,16
0,3	0,18	1,2	0,78	2,1	0,12
0,4	0,31	1,3	0,71	2,2	0,09
0,5	0,44	1,4	0,63	2,3	0,06
0,6	0,57	1,5	0,54	2,4	0,04
0,7	0,68	1,6	0,46	2,5	0,03
0,8	0,76	1,7	0,36		

$$dN(u) = Nf(u)du = \frac{4}{\sqrt{\pi}}Nu^2e^{-u^2}du$$

$$dN(u) = Nf(u)du = \frac{4}{\sqrt{\pi}}Nu^2e^{-u^2}du$$

Относительное число молекул, скорости которых лежат в интервале от u_1 <u<∞, рассчитанные по формуле:

$$\frac{N_1}{N} = \int_{u_1}^{\infty} f(u) du$$
 , приводятся в таблице:

u ₁	N ₁ /N	u ₁	N ₁ /N
0	1,000	0,8	0,734
0,2	0,994	1,0	0,572
0,4	0,957	1,25	0,374
0,5	0,918	1,5	0,213
0,6	0,868	2,0	0,046
0,7	0,806	2,5	0,0057

4.(5.95) Какая часть молекул кислорода (O₂) при t=0°C обладает модулем скорости, заключенным в интервале от ∪₁=100 м/с до $U_2 = 110 \text{ M/c}$?

Решение.

Дано T=273K $U_1 = 100 M/C ДО$ $U_{2}^{-}=110 \text{ M/C}$ $\mu = 32 \cdot 10^{-3} \text{ кг/моль}$

f(u)

0

0.02

0,09

0,18

0,31

0.44

0,57

0.68

0,76

u

0

0.1

0,2

0,3

0,4

0.5

0,6

0,7

0,8

 $\frac{\Delta N}{N} = ?$

$$v_e = \sqrt{\frac{2RT}{\mu}} = \sqrt{\frac{2 \cdot 8,31 \cdot 273}{32 \cdot 10^{-3}}} \approx 376 (\frac{M}{c})$$

2,2

2,3

2,4

2,5

0,09

0,06

0,04

0.03

0,71

0,63

0,54

0,46

0,36

1,3

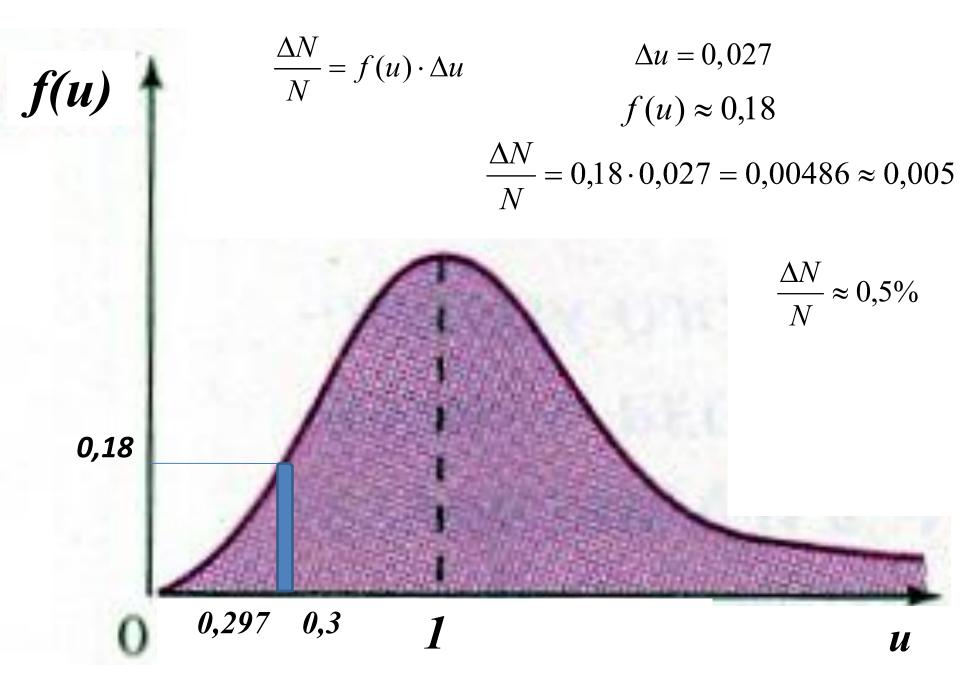
1,4

1,5

1,6

1,7

$$\Delta u = \frac{\upsilon_2 - \upsilon_1}{\upsilon_6} = 0,027$$


$$\Delta u << u$$

$$\frac{\Delta N}{N} = f(u) \cdot \Delta u$$

 $u_1 = \frac{v_1}{v_2} = \frac{100}{376} = 0,27$

 $u_2 = 0.297 (\approx 0.3)$

$$\frac{\Delta u << u}{N} = f(u) \cdot \Delta u$$

5.(5.97) Какая часть молекул водорода (H₂) при t=0⁰C обладает модулем скорости, заключенным в интервале от ∪₁=2000 м/с до

 $U_2 = 2100 \text{ M/c}$?

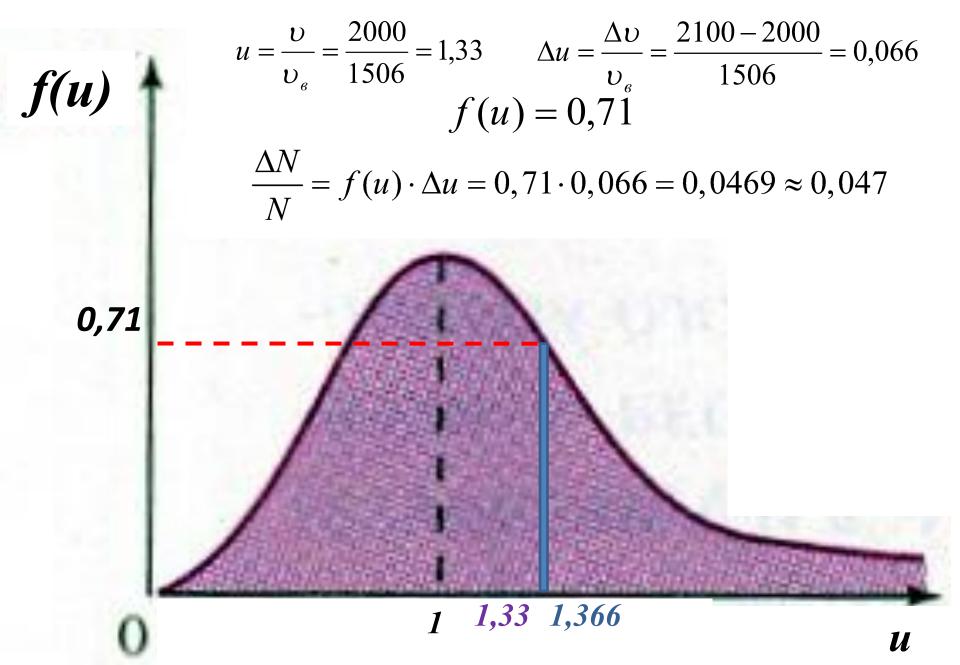
Решение. .

$$v_{e} = \sqrt{\frac{2 \cdot 8,31 \cdot 273}{2 \cdot 10^{-3}}} = 1506(\frac{M}{c})$$

$$\mu = 2 \cdot 10^{-3} \text{ Ke/}_{MOЛЬ}$$
 $v_1 = 2000 \text{ M/C}$
 $u = \frac{v}{v_s} = \frac{2000}{1506} = 1,33$

$$\frac{\Delta N}{N} = ?$$

$$u = \frac{v}{v_e} = \frac{2000}{1506} = 1.3$$


$$u = 1,33 (\approx 1,3)$$

$$f(u) = 0.71$$

u	f(u)	u	f(u)	u	f(u)
0	0	0,9	0,81	1,8	0,29
0,1	0,02	1,0	0,83	1,9	0,22
0,2	0,09	1,1	0,82	2,0	0,16
0,3	0,18	1,2	0,78	2,1	0,12
0,4	0,31	1,3	0,71	2,2	0,09
0,5	0,44	1,4	0,63	2,3	0,06
0,6	0,57	1,5	0,54	2,4	0,04
0,7	0,68	1,6	0,46	2,5	0,03
0,8	0,76	1,7	0,36		

$$\Delta u \ll u \qquad \Delta u = \frac{\Delta v}{v_e} = \frac{2100 - 2000}{1506} = 0,066$$

$$\frac{\Delta N}{N} = f(u) \cdot \Delta u$$

Ответ: 4,5 %.

6.(5.99) Какая часть молекул азота (N_2), находящегося при температуре T, имеет скорости, лежащие в интервале от U_B до $U_B + \Delta U$, где $\Delta U = 20$ м/с?

Задачу решить для: 1) Т=400 К, 2) Т=900 К.

Дано

$$\mu = 28 \cdot 10^{-3} \, \text{Ke/}_{MOЛb}$$

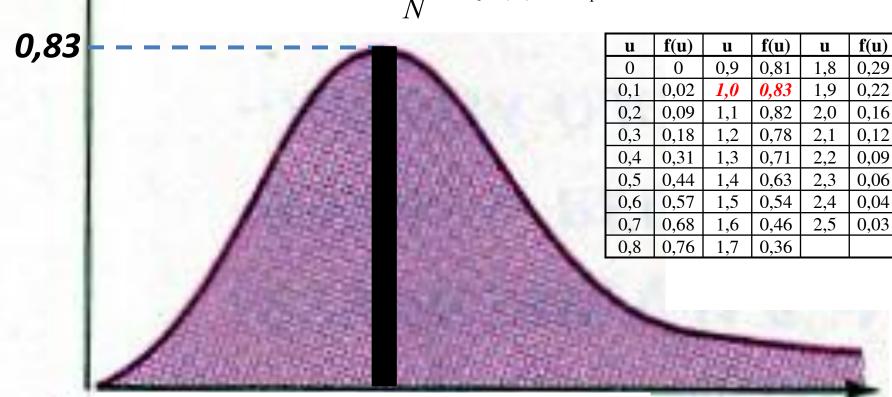
 $\Delta U=20 \text{ M/C}$

1) T=400 K

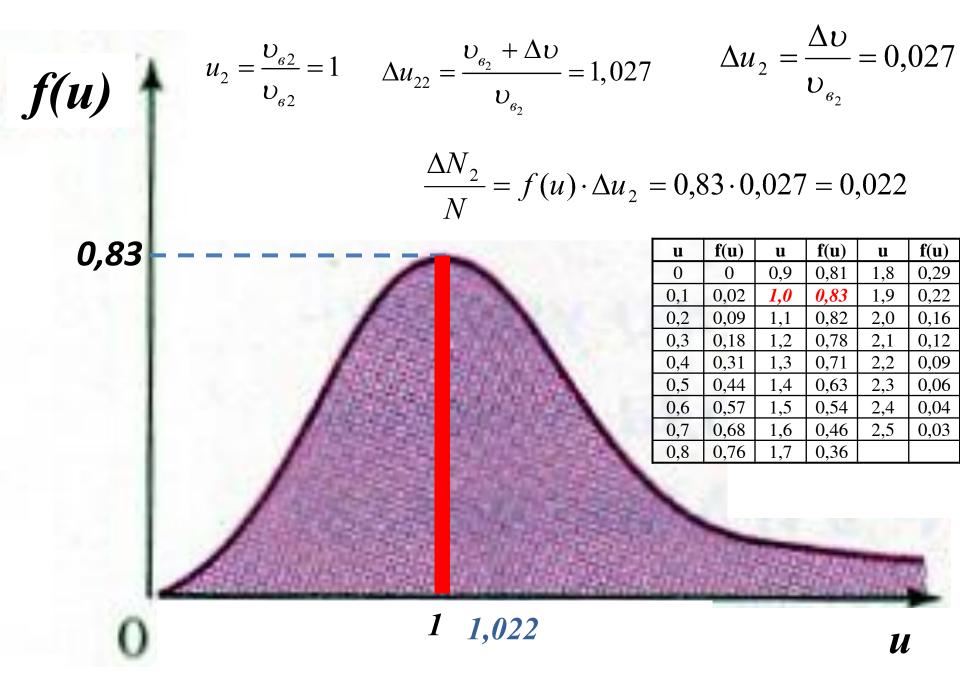
2) L=900 K
$$\Delta N_1$$

$$\frac{\Delta N_1}{N} = ?$$

$$\frac{\Delta N_2}{N} = ?$$


$$\upsilon_{e_1} = \sqrt{\frac{2RT}{\mu}}$$

$$\upsilon_{e_1} = \sqrt{\frac{2RT}{\mu}} = \sqrt{\frac{2 \cdot 8,31 \cdot 400}{28 \cdot 10^{-3}}} = 487(\frac{M}{C})$$


$$\upsilon_{e_2} = \sqrt{\frac{2 \cdot 8,31 \cdot 900}{28 \cdot 10^{-3}}} = 731(\frac{M}{c})$$

$$u_1 = \frac{v_{e1}}{v_{e_1}} = 1$$
 $u_{12} = \frac{v_e + \Delta v}{v_{e_1}} = 1,041$ $\Delta u_1 = \frac{\Delta v}{v_{e_1}} = \frac{20}{487} = 0,041$

$$f(1) = 0.83 \qquad \frac{\Delta N_1}{N} = f(u) \cdot \Delta u_1 = 0.83 \cdot 0.041 = 0.034$$

1 1,041

Omsem: 1) $\Delta N/N=3,4\%$; 2) $\Delta N/N=2,2$

7.(5.100) Какая часть молекул азота N_x/N при температуре $t=150^{\circ}$ C обладает скоростями, лежащими в интервале от $U_1=300$ м/с до $U_2=800$ м/с? **Ответ:** $N_1/N=87$ %; $N_2/N=17$ %; $N_1/N=70$ %.

Дано

t=150 $^{\circ}$ C U₁=300 M/C U₂=800 M/C?

$$N_x/N=?$$

$$\Delta \upsilon = \upsilon_2 - \upsilon_1 = 500 \frac{M}{c}$$

$$\upsilon_e = \sqrt{\frac{2RT}{\mu}} = \sqrt{\frac{2 \cdot 8,31 \cdot 423}{28 \cdot 10^{-3}}} = 498,7 \approx 499 (\frac{M}{c})$$

$$u_1 = \frac{v_1}{v_2} = \frac{300}{499} = 0,60$$

$\mathbf{u_1}$	N ₁ /N	u ₁	N ₁ /N
0	1,000	0,8	0,734
0,2	0,994	1,0	0,572
0,4	0,957	1,25	0,374
0,5	0,918	1,5	0,213
0,6	0,868	2,0	0,046
0,7	0,806	2,5	0,0057

$$u_2 = \frac{v_2}{v_3} = \frac{800}{499} = 1,60$$

f(u)

\mathbf{u}_1	N ₁ /N	u ₁	N ₁ /N
0	1,000	0,8	0,734
0,2	0,994	1,0	0,572
0,4	0,957	1,25	0,374
0,5	0,918	1,5	0,213
0,6	0,868	2,0	0,046
0,7	0,806	2,5	0,0057

$$u_1 = \frac{v_1}{v_e} = \frac{300}{499} = 0,60$$

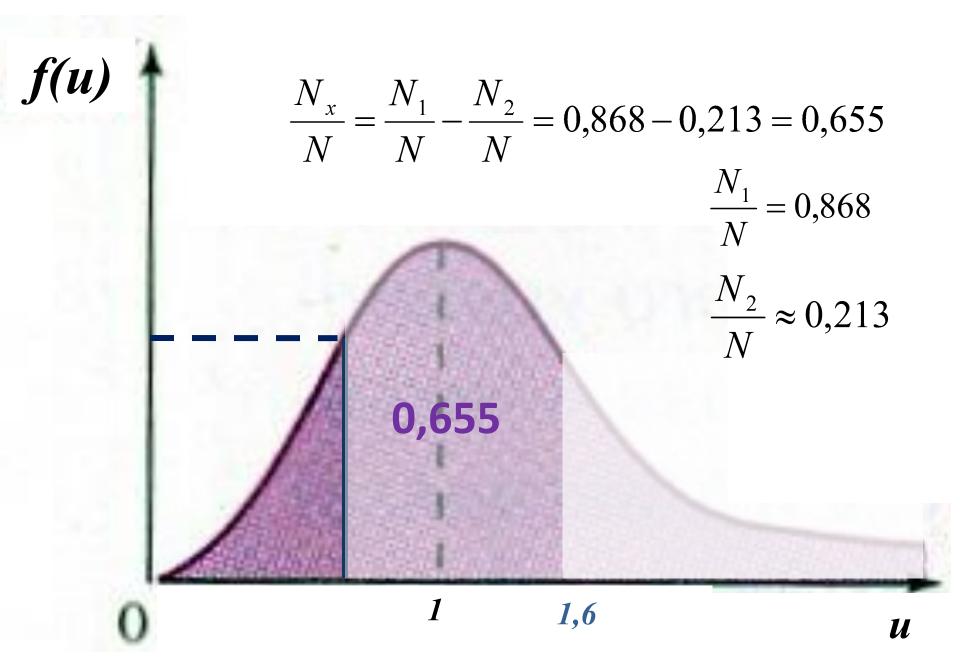
$$\frac{N_1}{N} = \int_{u_1}^{\infty} f(u) du$$

$$\frac{N_1}{N} = 0,868$$

f(u)

$\mathbf{u_{_1}}$	N ₁ /N	$\mathbf{u}_{\scriptscriptstyle{1}}$	N ₁ /N
0	1,000	0,8	0,734
0,2	0,994	1,0	0,572
0,4	0,957	1,25	0,374
0,5	0,918	1,5	0,213
0,6	0,868	2,0	0,046
0,7	0,806	2,5	0,0057

$$u_2 = \frac{v_2}{v_6} = \frac{800}{499} = 1,60$$


$$\frac{N_2}{N} = \int_{u_2}^{\infty} f(u) du$$

$$\frac{N_2}{N} \approx 0,213$$

1

1,6

U

Omeem: N₁/N=87 %; N₂/N=21 %; N_x/N=66

8.(5.101) Какая часть общего числа N молекул имеет скорости:

1) больше наиболее вероятной скорости, 2) меньше наиболее вероятной скорости?

Omeem: 1) $N_1/N=57 \%$; 2) $N_2/N=43 \%$.

Решение.

Дано

$$\upsilon > \upsilon_e$$
 $\upsilon < \upsilon_e$

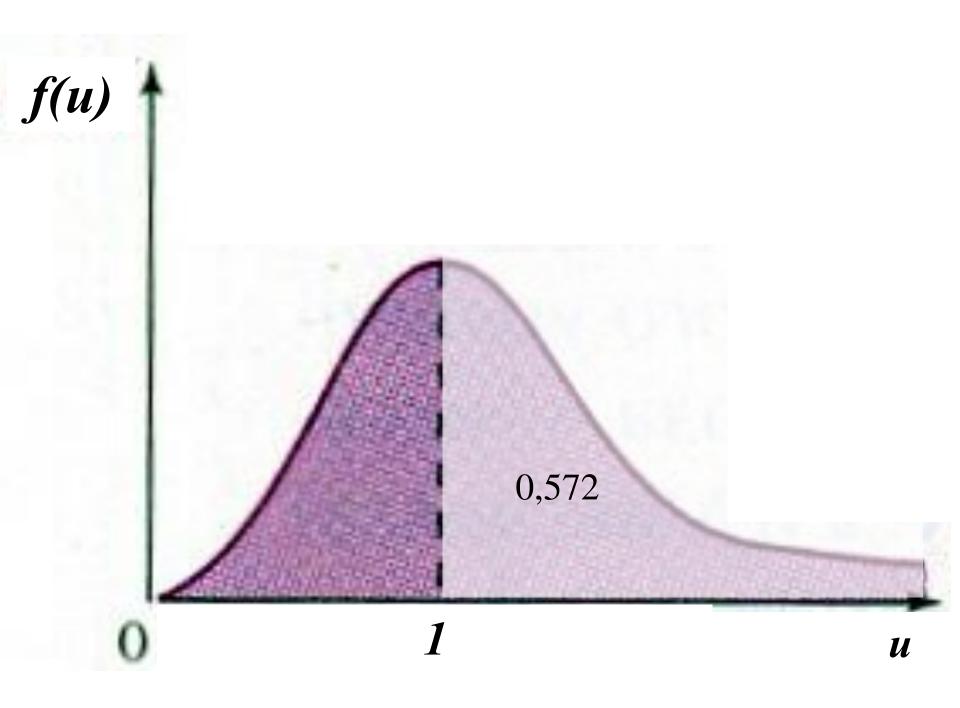
$$\upsilon < \upsilon_e$$

$$\frac{N_1}{N} = ?$$

$$\frac{N_2}{N} = ?$$

Пусть	$N_{\scriptscriptstyle 1}$	- часть м	олекул, скор	ости которых
	1	больше	наиболее	вероятной
	N	скорости		• >

. Относительная скорость в этом случае


.По таблице определяем для *u=1*

u = =	1
V_{e} $N_{1} = 0.572$	
$\frac{1}{N} = 0,572$	

$$\frac{N_1}{N} + \frac{N_2}{N} = 1$$

Тогда часть молекул, скорости которых $\frac{N_2}{N} = 1 - \frac{N_1}{N} = 0,428$ меньше наиболее вероятной скорости

$$\frac{N_2}{N} = 1 - \frac{N_1}{N} = 0,428$$

9.(5.106) Высотная обсерватория расположена на высоте h=3250 м над уровнем моря. Найти давление воздуха на этой высоте. Температура воздуха постоянна и равна 5°C. Молярная масса воздуха μ=29·10⁻³ кг/моль. Давление воздуха на уровне моря р=760 мм рт. ст.

Ответ: P=67,8 кПа.

Дано

h=3250 м T=5+273=278(K)).

 $p_0 = 760 \text{ MM pt. ct.}$

1мм рт. ст.=133∏а

 $\mu = 29 \cdot 10^{-3} \, \text{кг/моль}$

$$R = 8.31 \frac{\text{Дж}}{\text{моль} \cdot K}$$

$$g = 9.8 \frac{\text{м}}{c^2}$$

Решение.

$$P = P_0 e^{-\frac{\mu g h}{RT}}$$

P – атмосферное давление на высоте h;

$$P = 760 \cdot 133 \cdot e^{-\frac{29 \cdot 10^{-3} \cdot 9, 8 \cdot 3250}{8,31 \cdot 278}} = 67, 8 \cdot 10^{3} (\Pi a)$$

Omeem: P=67,8

10.(5.111) На какой высоте плотность газа составляет 50 % от его плотности на уровне моря? Температура постоянна и равна 0°C. Задачу решить для: 1) воздуха, 2) водорода.

Ответ: 1) h=5,5 км; 2) h=80 км.

Дано
$$\rho = \rho_0 e^{-\frac{\mu g h}{RT}}$$

$$R = 8.31 \frac{\text{Дэнс}}{\text{моль} \cdot K}$$

$$g = 9.8 \frac{\text{м}}{\text{c}^2}$$

$$T = 273$$

$$K$$

$$\mu_1 = 29 \cdot 10^{-3} \frac{\text{кг}}{\text{моль}}$$

$$\mu_2 = 2 \cdot 10^{-3} \frac{\text{кг}}{\text{моль}}$$

Решение.

$$PV = \frac{m}{\mu}RT$$

$$P = \frac{m}{V\mu}RT = \frac{\rho}{\mu}RT$$

$$P = P_0 \cdot e^{-\frac{\mu gh}{RT}}$$

$$\rho = \rho_0 e^{-\frac{\mu gh}{RT}}$$

$$h = \frac{RT \ln \rho}{\mu g}$$

$$h_1 = \frac{8,31 \cdot 273 \cdot \ln 2}{29 \cdot 10^{-3} \cdot 9,8} = 5,5 \cdot 10^3 (M)$$

$$m_2 = \frac{8,31 \cdot 273 \cdot \ln 2}{2 \cdot 10^{-3} \cdot 9,8} = 8,0 \cdot 10^3 ($$