Методика для экспресс анализа структур при многих критериях (оперативного анализа структур)

Выполнила:

Студентка гр. ТМД-114

Бебенина Дарья

• Системный анализ - совокупность методологических средств, используемых для подготовки и обоснования решений по сложным проблемам политического, военного, социального, экономического, научного и технического характера

• Основная процедура - построение обобщенной модели, отображающей взаимосвязи реальной ситуации: техническая основа системного анализа - вычислительные машины и информационные системы.

ОПЕРАТИВНЫЙ АНАЛИЗ

Цель: оперативное реагирование на неблагоприятные для организации изменения внутренней и внешней среды.

Задача: постоянный мониторинг и оперативная оценка различных параметров функционирования организации, выявление недостатков и причин их возникновения.

•Задачи оптимизации и выбора решений

- •Однокритериальные •(задачи скалярной оптимизации)
- •Многокритериальные •(задачи векторной оптимизации)

Основные проблемы, возникающие при выборе решений по многим критериям:

- противоречивость критериев;
- невозможность аналитического выражения связей между оценками по разным критериям;
- оценки по различным критериям имеют разный вид;
- числовые оценки отличаются по размерности, по направленности, по диапазону значений;
- различие критериев по важности.

Методика для экспресс анализа структур при многих критериях

- Исходная цель \mathbf{Z} структурирована и разбита на \mathbf{m} подцелей $\mathbf{Z}_1, \mathbf{Z}_2, ..., \mathbf{Z}_{\mathbf{m}}$.
- Построено множество альтернативных структур, состоящее из **n** возможных вариантов $S_1, S_2, ..., S_n$.
- Для оценки степени достижения каждой из частных целей $\mathbf{Z_1}, \mathbf{Z_2}, \dots, \mathbf{Z_m}$ сформировано множество из т критериев $\mathbf{K_1}, \mathbf{K_2}, \dots, \mathbf{K_m}$

	S_1	S_2	• • •	S_n
K_1	k ₁₁	k ₁₂	• • •	\mathbf{k}_{1n}
K_2	k ₂₁	k ₂₂	• • •	k _{2n}
• • •	• • •	• • •	• • •	• • •
K _m	k _{m1}	k _{m2}	• • •	k _{mn}

- P_i вероятность достижения конечной цели Z
- $\mathbf{p_{ji}}$ вероятность достижения промежуточной цели Z_{ij} (частная цель, состоящая в достижении наилучшей оценки по критерию K_j для структуры S_i .)

Задача: сформировать множество перспективных структур, состоящее из таких структур S_i , для которых $P_i \ge p_0$

Принцип Флейшмана: вероятность достижения цели Z не превышает вероятности достижения частной цели Z_{ij}

$$P_i \leq \min(P(Z_{ji}))$$

Методика для экспресс-анализа структур:

1. Матрица векторных оценок $[K_{ii}]$ приводится к виду:

$$p_{ji} = K_{ji}/\max(K_{ji})$$
 для $K_{j} \rightarrow \max;$ $p_{ji} = \min(K_{ji})/K_{ji}$ для $K_{j} \rightarrow \min;$

2. Безразмерные оценки p_{ji} интерпретируются как вероятности достижения частных целей Z_{ji}

- 3. Для всех структур определяются комплексные оценки: $P_i \le min\{P(Z_{ii})\}$
- 4. Отбирается множество структур, для которых:

$$P_i \ge p_0$$