

ЭЛЕКТРОСТАТИКИ — 12 ЗАКОН КУЛОНА

Подготовила учитель физики МОУ СОШ №2 город<mark>а Задонска</mark>

ДУРНЕВА ЛЮДМИЛА АЛЕКСЕЕВНА

Цели урока:

- Разъяснить физический смысл закона Кулона;
- Указать границы его применимости;
- Решение несложных задач на применение формулы закона Кулона;
- Формировать нравственные отношения в процессе деятельности учащихся на уроке, воспитывать мировоззренческие понятия (причинно-следственные связи в окружающем мире, познаваемость мира).

ЭПИГРАФ

«Три пути ведут к знанию: путь размышления—это путь самый благородный, путь подражания—это путь самый легкий, и путь опыта—это путь самый горький»

Актуализация знаний

- •Что изучает электродинамика?
 - Что изучает электростатика?

Тест

- 1. Какое из утверждений верно?
- а) При электризации трением зарядить можно только одно тело.
- б) При электризации трением электризуются оба тела.
- в) При электризации трением тела остаются электрически нейтральными
- 2. Частица, имеющая наименьший отрицательный заряд, называется
- а) атомом
- б) протоном
- в) электроном
- 3. Единицей электрического заряда является
- a) 1 H
- б) 1 Кл
- в) 1Дж
- 4. Какая часть атома имеет положительный и отрицательный заряд
- а) ядро отрицательный, электроны отрицательный;
- б) ядро отрицательный, электроны положительный;
- в) ядро положительный, электроны отрицательный.
- 5. Электроскопу сообщили заряд -8*10-10 Кл. Какому числу электронов соответствует этот заряд?
- a) 5*10-9;
- *б)* 5*1010;
- в) 5*109.

- 1. Какое из утверждений верно?
- а) При электризации трением зарядить можно только одно тело.
- б) При электризации трением электризуются оба тела.
- в) При электризации трением тела остаются электрически нейтральными.

- 2. Частица, имеющая наименьший отрицательный заряд, называется:
- а) атомом;
- б) протоном;
- в) электроном.

- 3. Единицей электрического заряда является:
- a) 1 H;
- б) 1 Кл;
- в) 1Дж.

- 4. Какая часть атома имеет положительный и отрицательный заряд:
- а) ядро отрицательный,электроны отрицательный;
- б) ядро отрицательный, электроны – положительный;
- в) ядро положительный, электроны отрицательный.

5. Электроскопу сообщили заряд $-8 \cdot 10^{-10} \hat{E}$ ё. Какому числу электронов соответствует этот заряд?

- a) $5 \cdot 10^{-9}$;
- 6) $5 \cdot 10^{10}$;
- *B*) $5 \cdot 10^9$;

Тест

- 1. Какое из утверждений верно?
- а) При электризации трением зарядить можно только одно тело.
- б) При электризации трением электризуются оба тела.
- в) При электризации трением тела остаются электрически нейтральными
- 2. Частица, имеющая наименьший отрицательный заряд, называется
- а) атомом
- б) протоном
- в) электроном
- 3. Единицей электрического заряда является
- a) 1 H
- б) 1 Кл
- в) 1Дж
- 4. Какая часть атома имеет положительный и отрицательный заряд
- а) ядро отрицательный, электроны отрицательный;
- б) ядро отрицательный, электроны положительный;
- в) ядро положительный, электроны отрицательный.
- 5. Электроскопу сообщили заряд $-8\cdot 10^{-10}\,\hat{E}\ddot{e}$ Какому числу электронов соответствует этот заряд?
- a) $5 \cdot 10^{-9}$;
- 6) $5 \cdot 10^{10}$;
- 6) $5 \cdot 10^9$;

Актуализация знаний

- Какие типы взаимодействий вы знаете?
- Как на опыте показать, что между телами существует гравитационное взаимодействие, электромагнитное взаимодействие?

Гравитационное взаимодействие

•Закон всемирного тяготения. (1666 г.) Все тела притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния *r* между ними:

$$F = G \frac{m_1 m_2}{r^2}$$

где $G = 6,67 \cdot 10^{-11} \dot{I} \cdot \dot{\imath}^2 / \hat{e}\tilde{a}^2$ – гравитационная постоянная.

Границы применимости

Закон всемирного тяготения справедлив:

• для точечных тел;

для сферически симметричных тел;

для любых тел, если расстояние между ними значительно больше их размеров.

ШАРЛЬ ОГЮСТЕН КУЛОН (1736 — 1806)

Подготовила уч-ца 10 класса Третьякова Юлия.

Шарль Огюстен Кулон

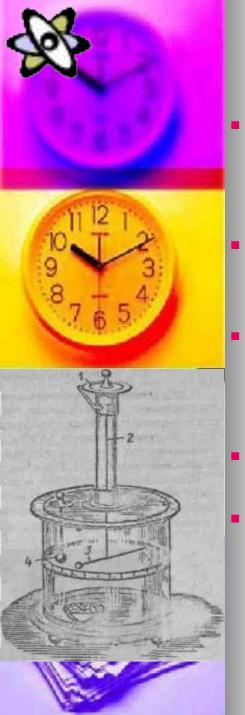
Шарль Огюстен де Кулон — французский военный инженер и учёный-физик, исследователь электромагнитных и механических явлений; член Парижской Академии наук. Его именем названы единица электрического заряда и закон взаимодействия электрических зарядов.

Детство Шарля Огюстена Кулона

Шарль Кулон родился 14 июня 1736 г. в Ангулеме, в семье правительственного чиновника. Учился в одной из лучших школ для молодых людей дворянского происхождения «Коллеже четырёх наций» (Коллеж Мазарини). После окончания этого заведения сдал экзамены и в феврале 1760 г. поступил в Военно-инженерную школу в Мезьере, одно из лучших высших технических учебных заведений XVIII века.

Затем в течение нескольких лет Кулон служил в инженерных войсках на принадлежавшем Франции острове Мартиника

Вернувшись с Мартиники, Кулон активно занялся научными исследованиями. Публиковал работы по технической механике (статика сооружений, теория ветряных мельниц, механические аспекты кручения нитей, сформулировал законы кручения; изобрёл крутильные весы, которые сам же применил для измерения электрических и магнитных сил взаимодействия. В 1781 г. описал опыты по трению скольжения и качения и сформулировал законы сухого трения. В том же году стал членом Парижской Академии наук.


ЮНОСТЬ

Первая же научная работа Кулона, начатая еще на Мартинике, была посвящена методам решения задач строительной механики. Она сразу принесла Кулону известность.

После революции Академия наук неоднократно вызывала учёного в Париж для участия определении мер и весов. Он переехал в Париж, полностью посвятив себя научной работе

Кулон стал одним из первых членов Национального института, заменившего академию. В 1802 г. был назначен инспектором общественных сооружений.

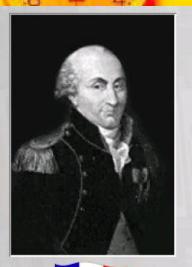
Открытие военного инженера Кулона

- В течение нескольких лет он проводил эксперименты с помощью прибора, который вначале был предназначен для изучения законов закручивания шелковых и волосяных нитей, а также металлических проволок.
- В 1785 г. Кулон установил, что «сила кручения пропорциональна углу закручивания». Прибор назвал «крутильными весами».
- Он установил, что сила взаимодействия наэлектризованных тел ,пропорциональна «количеству электричества» заряженных тел и обратно пропорциональна квадрату расстояния между ними.
- Так был открыт Кулоном знаменитый закон, носящий его имя.
- Кулоном аналитически и экспериментально было доказано, что электричество распространяется по поверхности проводника, а также равномерно распределяется по поверхности изолированной проводящей сферы.

Заслуги Шарля Кулона

Ш. Кулон достиг блестящих научных результатов. Закономерности внешнего трения, закон кручения упругих нитей, основной закон электростатики, закон взаимодействия магнитных полюсов — все это вошло в золотой фонд науки. «Кулоновское поле», «кулоновский потенциал», «кулон» прочно закрепились в физической терминологии.

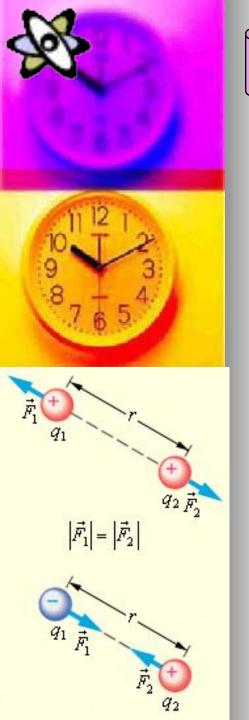
Последние годы жизни КУЛОНА


Последние годы жизни Кулона прошли в заботах о воспитании нового поколения образованных ученых и инженеров и совершенствовании народного образования, занимался изучением вязкого трения.

Кулон умер в Париже, когда ему было 70 лет. В честь выдающегося французского ученого была названа единица электрического заряда -- кулон (Кл), введенная в практику в 1881 году.

Электростатическое взаимодействие

•Закон Кулона.(1785 г.)


Сила взаимодействия между двумя неподвижными точечными зарядами, находящимися в вакууме, прямо пропорционально произведению модулей зарядов, обратно пропорциональна квадрату расстояний между ними.

$$F = k \frac{q_1 q_2}{r^2} \qquad k = 9 \cdot 10^9 \frac{\dot{I} \cdot \dot{i}^2}{\dot{E} \ddot{e}^2}$$

$$k = \frac{1}{4\pi\varepsilon_0} \qquad \varepsilon_0 = 8,85 \cdot 10^{-12} \frac{\dot{E} \ddot{e}^2}{\dot{I} \cdot \dot{i}^2}$$

 $arepsilon_{\scriptscriptstyle \Delta}$ — электрическая постоянная

Границы применимости

Закон Кулона справедлив:

- заряженные тела должны быть точечными: размеры тел много меньше расстояния между ними;
- заряженные тела должны быть неподвижными;

Физкультминутка

Подумай сам

Сравнить электростатическую и гравитационную силы, действующие между электроном и протоном в атоме водорода (радиус орбиты $0,53 \cdot 10^{-10} \, i$)

Дано:

$$\hat{o}_{a} = 9,1 \cdot 10^{-31} \hat{e}a$$

$$\hat{o}_{a} = 1,67 \cdot 10^{-27} \hat{e}a$$

$$\hat{a} = 1,6 \cdot 10^{-19} \hat{E}\ddot{e}$$

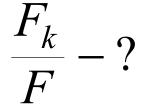
$$G = 6,67 \cdot 10^{-11} f \cdot i^{2} / \hat{e}a^{2}$$

$$k = 9 \cdot 10^{9} \frac{f \cdot i^{2}}{\hat{E}\ddot{e}^{2}}$$

Решение:

Подумай сам

Сравнить электростатическую и гравитационную силы, действующие между электроном и протоном в атоме водорода (радиус орбиты $0.53 \cdot 10^{-10} i$)


Дано:

$$\hat{O}_{\delta} = 9,1 \cdot 10^{-31} \hat{e} \tilde{a}
\hat{O}_{\delta} = 1,67 \cdot 10^{-27} \hat{e} \tilde{a}
\hat{a} = 1,6 \cdot 10^{-19} \hat{E} \ddot{e}
G = 6,67 \cdot 10^{-11} \dot{I}_{\delta} \cdot \dot{i}_{\delta}^{2} / \hat{e} \tilde{a}^{2}
k = 9 \cdot 10^{9} \frac{\dot{I}_{\delta} \cdot \dot{i}_{\delta}^{2}}{\hat{E} \ddot{e}^{2}}$$

$$\frac{F_{k}}{F} = \frac{8,2 \cdot 10^{-8} \dot{I}_{\delta}}{3,6 \cdot 10^{-47} \dot{I}_{\delta}} = \frac{8,2 \cdot 10^{-8} \dot{I}_{\delta}}{3,6 \cdot 10^{-47} \dot{I}_{\delta}} = 2,3 \cdot 10^{39}$$

Решение:

$$\frac{F_k}{F} = \frac{8,2\cdot10^{-8} I}{3,6\cdot10^{-47} I} = \frac{2,3\cdot10^{39}}{10^{39}}$$

Сложно – не всегда страшно

Вариант №1

Задача. На каком расстоянии надо расположить два заряда, $q_1 = 5 \cdot 10^{-9} \, \hat{E} \ddot{e}$ и $q_2 = 6 \cdot 10^{-9} \, \hat{E} \ddot{e}$ чтобы они отталкивались друг от друга с силой $12 \cdot 10^{-5} \, \dot{I}$?

Вариант №2

Задача. Два одинаковых положительных заряда находятся на расстоянии 10 мм друг от друга. Как велик заряд каждого шарика, если они взаимодействуют с силой $7,2\cdot 10^{-4}\, \mathring{I}$?

Сложно – не всегда страшно

Вариант №1

Задача. На каком расстоянии надо расположить два заряда, $q_1 = 5 \cdot 10^{-9} \, \hat{E} \ddot{e}$ и $q_2 = 6 \cdot 10^{-9} \, \hat{E} \ddot{e}$ чтобы они отталкивались друг от друга с силой $12 \cdot 10^{-5} \, \dot{I}$?

$$(\approx 4.74 \cdot 10^{-2} i)$$

Вариант №2

Задача. Два одинаковых положительных заряда находятся на расстоянии 10 мм друг от друга. Как велик заряд каждого шарика, если они взаимодействуют с силой $7,2\cdot 10^{-4}\, \mathring{I}$?

$$(\approx 2.8 \cdot 10^{-9} \hat{E}\ddot{e})$$

Итоги урока

Кроссворд

По горизонтали: 1.Сообщение телу электрического заряда;

- 2. Прибор, служащий для обнаружения заряда;
- 3 и 4. Частицы, из которых состоит ядро атома.

По вертикали: 5.Ученый, который открыл основной закон электростатики

Домашнее задание

§77 Задачи № 1, 2

Ум заключается не только в знании, но и в умении прилагать знание на деле.

Аристотель

