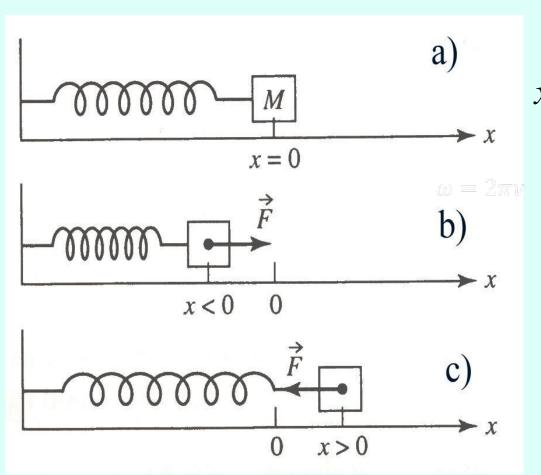

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ

- **I.** Механические колебания.
- **II.** Механические волны. Виды волн.
- III. Уравнение плоской волны.
- IV. Характеристики волны и среды, в которой распространяется волна.
 - VI. Эффект Доплера и его использование.

Виды колебаний


- 1. Свободные колебания возникают в системе, выведенной из состояния равновесия, в отсутствие постоянной действующей внешней силы;
- 2. Вынужденные колебания совершаются в условиях, когда на систему действует постоянная внешняя сила, изменяющаяся по гармоническому закону;
- 3. Автоколебания это незатухающие колебания, существующие в системе при отсутствии переменного внешнего воздействия.

Механические колебания- пружинный маятник

Незатухающие колебания - совершаются в системе в отсутствие затухания (трения) при действии упругой (квазиупругой силы)

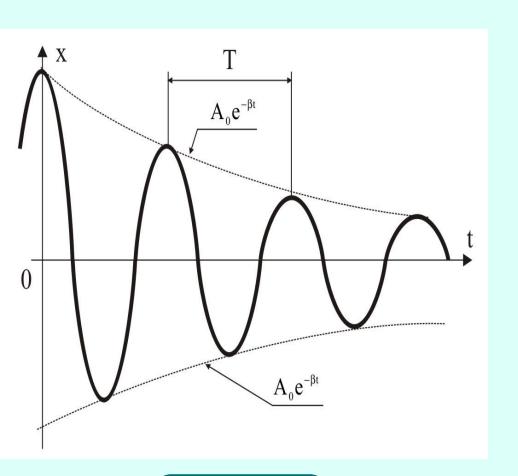
а) положение равновесия, b) и c) отклонения (смещения) от положения равновесия

$$x = x_0 \cos(\omega_0 t + \varphi_0)$$

 \mathcal{X} - смещение груза от положения равновесия

$$\boldsymbol{\mathcal{X}}_{\mathbf{0}}$$
 -амплитуда

$$\omega_0$$
 - собственная круговая частота


$$(\omega_0 t + \varphi_0)$$
 - фаза

$$T=rac{2\pi}{\omega_0}$$
 - период

V — частота колебаний

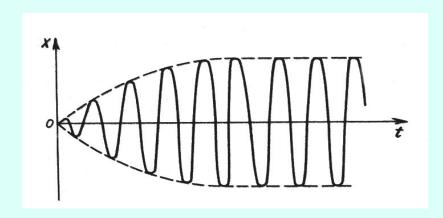
$$v = \frac{1}{T}; \qquad \omega = 2\pi i$$

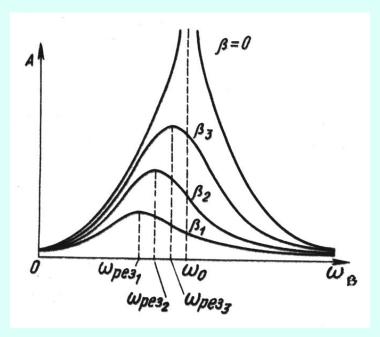
ЗАТУХАЮЩИЕ КОЛЕБАНИЯ

$$x = A_0 e^{-\beta t} \cos(\omega t + \varphi_0)$$

β -коэффициент затухания

$$\omega = \sqrt{\omega_0^2 - \beta^2}$$


$$A_0 e^{-\beta t}$$
-амплитуда


$$T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\omega_0^2 - \beta^2}} - период$$

$$\lambda = \beta T$$

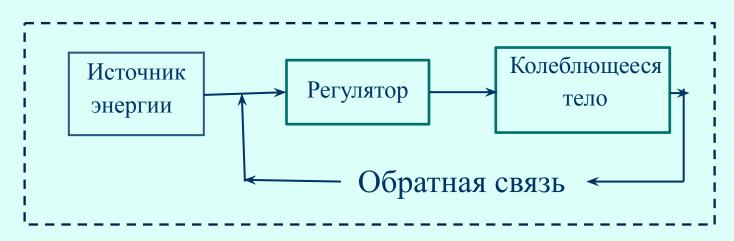
$$\lambda = \ln \frac{A_t}{A_{t+T}}$$
 - логарифмический декремент затухания

ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ. РЕЗОНАНС.

Резонансные кривые

$$F_{BHEIII} = F_0 \sin \omega t$$
 $T = \frac{2\pi}{\omega}$ - период

Резонанс – резкое (в системе без затухания - неограниченное) возрастание амплитуды колебаний при совпадении собственной частоты колебаний системы и частоты внешней силы


$$\omega_{pes} = \sqrt{\omega_0^2 - 2\beta^2}$$

АВТОКОЛЕБАНИЯ-

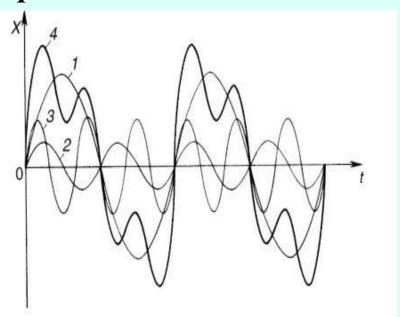
Существуют системы, регулирующие периодическое восполнение потерянной энергии и поэтому способные колебаться длительное время.

Автоколебания - незатухающие колебания, поддерживаемые внешним источником энергии, поступление которой регулируется самой колебательной системой.

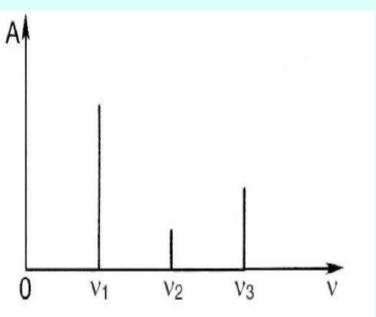
Системы, в которых возникают такие колебания, называются **автоколебательными**

Амплитуда и частота автоколебаний зависят от свойств самой автоколебательной системы. В автоколебательной системе сама колебательная система каналом обратной связи воздействует на регулятор энергии, информируя его о состоянии системы. Обратной связью называется воздействие результатов какого-либо процесса на его протекание.

Если такое воздействие приводит к возрастанию интенсивности процесса, то обратная связь называется положительной. Если воздействие приводит к уменьшению интенсивности процесса, то обратная связь называется отрицательной.


Примером механической автоколебательной системы являются часы, в которых маятник получает толчки за счет энергии поднятой гири, причем эти толчки происходят в те моменты, когда маятник проходит через среднее положение (демонстрация).

Примером биологических автоколебательных систем являются такие органы, как сердце, легкие.


СЛОЖЕНИЕ КОЛЕБАНИЙ

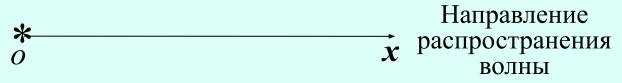
При сложении колебаний возможны более сложные формы колебаний. Для практических целей бывает полезно разложить сложное колебание на простые гармонические составляющие (Фурье-анализ).

Совокупность гармонических колебаний, на которые можно разложить сложное колебание, называется гармоническим спектром сложного колебания.

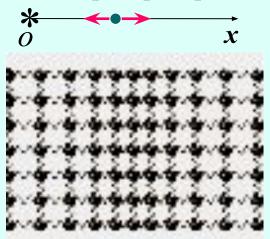
Сложное колебание

Гармонический спектр сложного колебания

Механические волны. Виды волн.

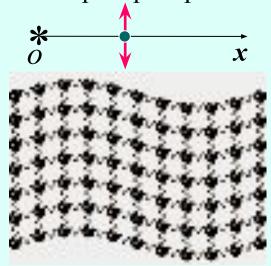

Волна – возмущения в среде, распространяющиеся с определенной скоростью

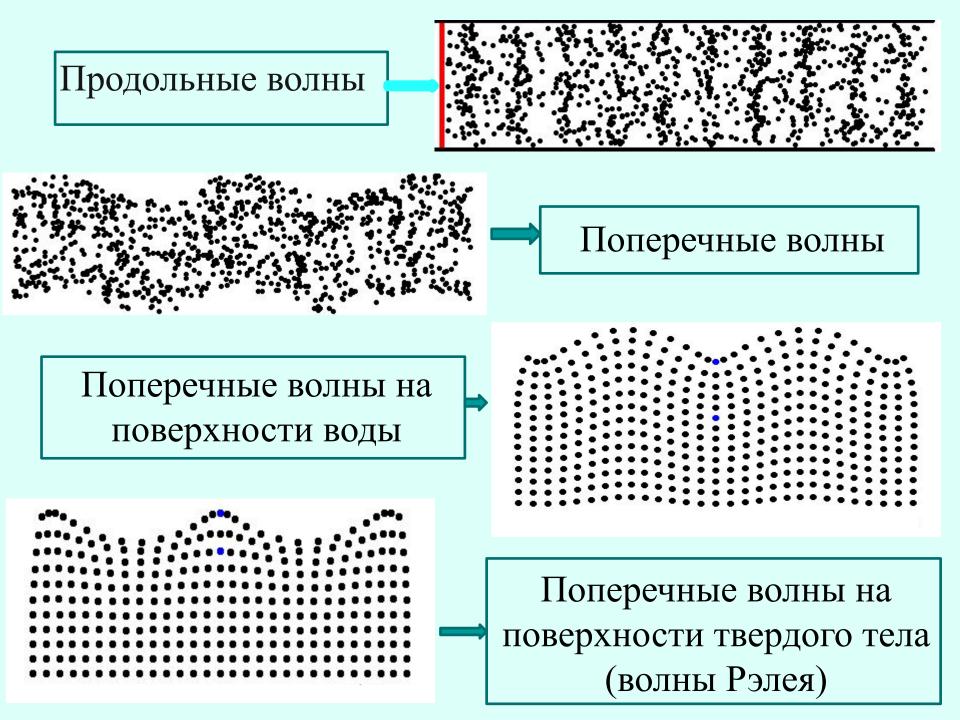
Механическая волна– механические возмущения (колебания), распространяющиеся в упругой среде с определенной скоростью и несущие энергию.


Распространение волны в среде не сопровождается перемещением частиц, частицы колеблются на месте, а волна переносит энергию

МЕХАНИЧЕСКАЯ ВОЛНА

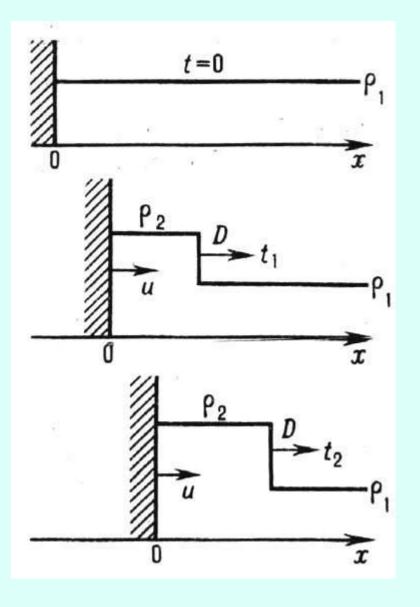
ПРОДОЛЬНАЯ


Волна, в которой колебания частиц среды совершаются вдоль направления распространения


Продольные волны могут распространяться в любых средах — твердых, жидких и газообразных.

ПОПЕРЕЧНАЯ

Волна, в которой колебания частиц среды совершаются поперёк направления распространения


Поперечные волны могут распространяться только в твердых средах и на поверхности раздела сред

Ударная волна - тонкая переходная область, в которой происходит резкое увеличение плотности, давления и скорости вещества. Такие волны возникают при взрывах, детонации, при сверхзвуковых движениях тел, при мощных электрических разрядах и пр. Например, при взрыве образуются высоко нагретые продукты, обладающие большой плотностью и находящиеся под высоким давлением. Расширяющиеся продукты взрыва сжимают окружающий воздух, в каждый момент времени сжатым оказывается ЛИШЬ находящийся в определённом объёме; вне этого объёма воздух остаётся в невозмущённом состоянии.

Простейший пример возникновения и распространения ударной волнысжатие поршнем газа в трубе. Если покоившийся поршень мгновенно приходит в движение со скоростью U, перед ним возникает ударная TO волна. Скорость её распространения D постоянна и больше U. Поэтому расстояние между поршнем и волной увеличивается пропорционально времени движения.

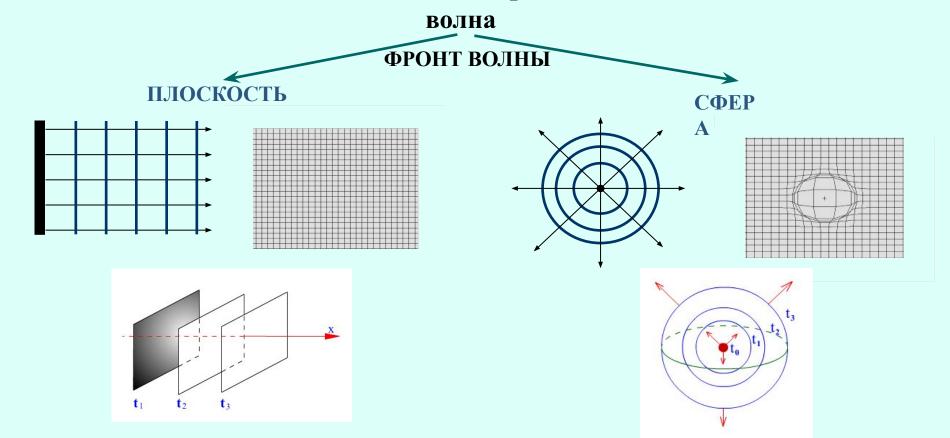
УРАВНЕНИЕ ПЛОСКОЙ ВОЛНЫ

Уравнение плоской волны — это зависимость смещения (S) любой точки среды в любой момент времени: S=f(x, t)

$$S = A \cos \omega t$$

$$\xrightarrow{x} \quad \tau = \frac{x}{v}$$

$$S = A \cos \omega (t - \tau)$$


$$s = A\cos\omega(t - \frac{x}{\upsilon})$$

УРАВНЕНИЕ ПЛОСКОЙ ВОЛНЫ

Характеристики волны и среды, в которой она распространяется

$$\varphi = \omega(t - \frac{x}{v}) \qquad [\varphi] = pa\partial$$

ФРОНТ ВОЛНЫ – множество точек, имеющих одинаковую фазу в данный момент времени

СКОРОСТЬ ВОЛНЫ – скорость распространения ее фронта (фиксированной фазы); зависит от свойств среды (плотности, температуры)

Среда	Скорость звука	
воздух	330 м/с	
вода	1500 м/с	

ДЛИНА – расстояние между двумя точками, фазы которых отличаются на 2π;

ВОЛНЫ — расстояние которое волна проходит за время равное периоду

- расстояние, которое волна проходит за время, равное периоду колебаний частиц среды

Для однородной среды скорость распространения волны постоянна:

$$\lambda = \upsilon T \qquad [\lambda] = M$$

$$\lambda = \frac{\upsilon}{\upsilon}$$

При одинаковой частоте, длина волны меняется при переходе из одной среды в другую, так как скорость распространения волны зависит от свойств среды

ВОЛНОВОЕ СОПРОТИВЛЕНИЕ СРЕДЫ

Доля энергии механической волны, проходящей из одной среды в другую, определяется коэффициентом проникновения β

• Коэффициент проникновения волны (β) — это величина, равная отношению интенсивностей прошедшей и падающей волн:

$$\frac{I_{nad}}{I_{nn}}$$
(2)
$$I_{npow}$$

Коэффициент проникновения можно выразить, используя понятие *волнового сопротивления среды*:

$$Z = c \times \rho$$

Здесь c –скорость волны, ho – плотность среды

ПОТОК ЭНЕРГИИ – средняя энергия, переносимая волной через некоторую поверхность за единицу времени (усреднение за время, превышающее период колебаний)

$$\Phi = \frac{E}{t} \qquad [\Phi] = Bm$$

интенсивность -отношение потока энергии к площади поверхности, ориентированной перпендикулярно распространению волны, через которую переносится энергия

$$I = \frac{\Phi}{S} \qquad [I] = \frac{Bm}{M^2}$$

$$I = \frac{\rho A^2 \omega^2 \upsilon}{2}$$

$$ho$$
 — плотность среды

 $I = \frac{\rho A^2 \omega^2 \upsilon}{2} \qquad \qquad \rho - \text{плотность среды}$ A - амплитуда колебаний точек среды ω – частота колебаний

ОСОБЕННОСТИ РАСПРОСТРАНЕНИЯ ВОЛН

В однородной среде волна распространяется прямолинейно с постоянной скоростью

При переходе через границу раздела сред волна может отражаться и преломляться

Если размер препятствия на пути распространения волны соизмерим с длиной волны, наблюдается явление **дифракции**- огибания волной препятствия

При сложении двух волн одинаковой частоты с постоянной во времени разностью фаз происходит *интерференция*-чередование в пространстве максимумов и минимумов интенсивности результирующей волны

ЧАСТОТНЫЕ ДИАПАЗОНЫ МЕХАНИЧЕСКИХ ВОЛН

ЧАСТОТА, Гц	диапазон	ПРИМЕРЫ
0,5 - 20	Инфразвук	Природные, производственные шумы, тоны сердца, лёгких и т.д.
20 - 20000	Слышимый звук	Голос, музыкальные звуки
	Ультразвук (УЗ)	Животные, насекомые, УЗ-излучатели
	Гиперзвук	Тепловые колебания молекул

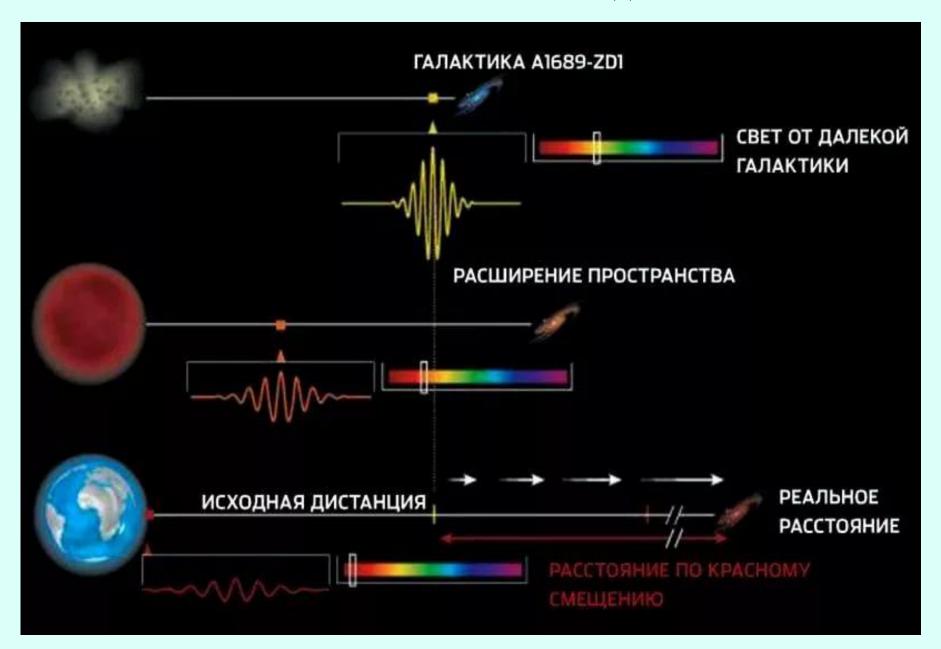
Эффект Доплера - изменение частоты волны, воспринимаемой наблюдателем (приемником волн), вследствие относительного движения источника волн и/или их приёмника

Кристиан Иоганн Доплер (1803–1853)

В 1842 году предложил математическое объяснение смещения спектра некоторых звезд. Через 3 года провели опыт с целью опровержения данной теории, но неожиданно получили её подтверждение.

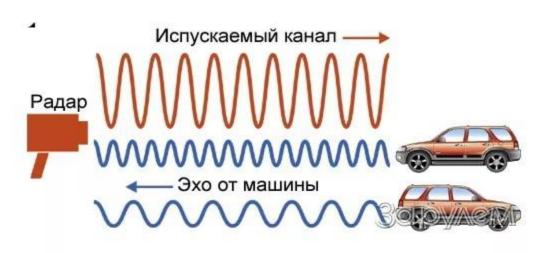
ЭФФЕКТ ДОПЛЕРА- *кажущееся* изменение частоты волны при взаимном перемещении источника и наблюдателя волн

$$u' = \frac{v \pm v_{\text{Haf}}}{v \mp v_{\text{HCT}}} v_{\text{HCT}}$$


$$\mathcal{U}_{ucm}$$
 -- скорость волны \mathcal{V}_{ucm} -- частота генератора (источника) \mathcal{U}_{hab} - скорость наблюдателя \mathcal{V}' -- наблюдаемая частота \mathcal{U}_{ucm} -- скорость источника \mathcal{U}_{ucm} -- скорость источника \mathcal{U}_{ucm} -- движение друг от друга

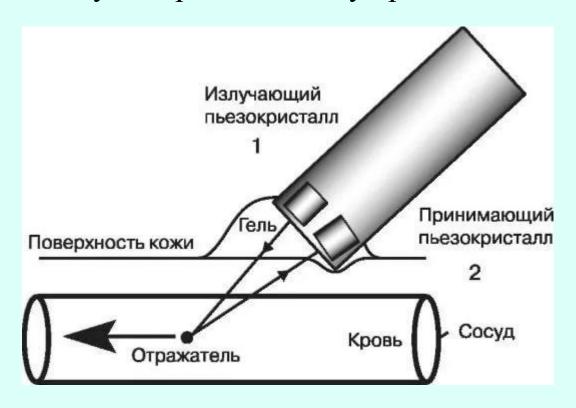
Источник неподвижен Источник движется с некоторой скоростью Источник движется со скоростью Скорость движения источника больше, чем скорость волны волны

ИСПОЛЬЗОВАНИЕ ЭФФЕКТА ДОПЛЕРА


Смещение спектральных линий, наблюдаемое в различных частях какой-нибудь галактики, свидетельствует о том, что она вращается. По эффекту Доплера можно оценить скорость вращения галактики. Это позволяет определить массу галактики.

ИСПОЛЬЗОВАНИЕ ЭФФЕКТА ДОПЛЕРА

ИСПОЛЬЗОВАНИЕ ЭФФЕКТА ДОПЛЕРА



определение скорости летательных аппаратов, кораблей, автомобилей и других объектов

Доплерография как метод диагностики в медицине

В медицине для получения информации с помощью эффекта Доплера используют ультразвук. Ультразвуковая волна, отражаясь от движущихся в артерии или вене эритроцитов, будет посылать из каждого участка сосуда отраженный звук разной частоты.

Скорость движущегося объекта определяют с помощью «доплеровского сдвига» частоты:

$$\Delta \nu_{\rm д} = \frac{2V_0}{V_{
m y3}} \times \nu_{
m reh}$$

Здесь V₀ и V_{уз} - скорости движения объекта и УЗ-волны, Vген - частота генератора

Анализ преобразованного сигнала дает исследователю информацию о важных параметрах:

скорости кровотока анатомии сосуда его деформациях состоянии стенки сосуда

характере кровотока: ламинарный, турбулентный наличии тромба или бляшки внутри сосуда степени проходимости сосуда

скорость движения клапанов и стенок сердца (доплеровская эхокардиография)