ОПТИКО-ЭЛЕКТРОННЫЕ

СИСТЕМЫ ЛЕТАТЕЛЬНЫХ

ΑΠΠΑΡΑΤΟΒ

Начальник лаборатории оптико-электронных систем

Хисматов Игорь Федорович

+7 963 772 0374 abu-sergey@yandex.ru

ТЕМА 3: АТМОСФЕРА КАК СРЕДА РАСПРОСТРАНЕНИЯ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ

- Геофизические параметры атмосферы.
- Районирование Земного шара с учетом типизации параметров атмосферы, влияющих на её оптические свойства
- Оптико-геофизические характеристики атмосферы
- □ Показатель молекулярного рассеяния оптического излучения
- Расчет спектральной молекулярной прозрачности атмосферыСхемы конструктивного исполнения лазеров

ГЕОФИЗИЧЕСКИЕ ПАРАМЕТРЫ АТМОСФЕРЫ

На условия распространения оптического излучения влияют следующие геофизические параметры атмосферы, изменяющиеся с высотой:

- - температура;
- давление;
- плотность;
- - коэффициент преломления.

Распределение указанных параметров по высоте представлено в ГОСТ 4401-81.

Распространение оптического излучения в атмосфере Земли сопровождается его энергетическим ослаблением, связанным с:

- с молекулярным поглощением (спектральная селективность);
- молекулярным (релеевским) рассеянием;

- аэрозольным ослаблением на естественных образованиях (дымка, туман, пыль(и искусственных (дымы).

ГЕОФИЗИЧЕСКИЕ ПАРАМЕТРЫ АТМОСФЕРЫ

Отдельные разделы затронутого круга вопросов нашли освещение:

- в серии монографий сотрудников Института оптики атмосферы им. В.Е. Зуева,
 изданных с 1986 по 1992 г. в Санкт-Петербургском гидрометеоиздате;
- в монографиях «Введение в технику разработки и оценки сканирующих тепловизионных систем» (подредакцией В.Л. Филиппова. Казань, 1998);
- «Оптическая погода в нижней тропосфере» (В.Л. Филиппов, А.С. Макаров, В.П.
 Иванов. Казань, 1998 г.;
- в книге «Всепогодность радиолокационных и тепловизионных каналов наведения комплексов ПВО» (А.Г. Шипунов, Е.Н. Семашкин. М., 2013).
- в монографии сотрудников АО «Государственный институт прикладной оптики»: В.Л. Филиппов, В.П. Иванов, В.С. Яцык «Атмосфера и моделирование оптикоэлектронных систем в динамике внешних условий», Казань, 2015 г.

ГЕОПОТЕНЦИАЛЬНАЯ ВЫСОТА

Для описания поля давления воздуха вводят понятие *сеопотенциальной* высоты.

Геопотенциал Ф характеризует потенциальную энергию частицы в точке пространства, а также геопотенциальные поверхности, содержащие совокупность таких частиц с одинаковым геопотенциалом.

$$\Phi = \int_{0}^{0} g(h) dh$$

H = --

 $g_{\rm c}$

где g — ускорение свободного падения

h — высота.

Геопотенциальная высота:

$$g(h) = g_{\rm c} \left(\frac{r_3}{r_3 + h}\right)^2$$

где $g_{\rm c}$ — стандартное ускорение свободного падения;

 $r_{_3}$ — радиус Земли.

$$H = \frac{r_3 h}{r_3 + h}$$

Относительно геопотенциальной высоты определяется высотный профиль

ГЕОПОТЕНЦИАЛЬНАЯ ВЫСОТА

GFS Model Run: 00Z020CT2014 Valid: 00Z020CT2014

ТЕМПЕРАТУРА АТМОСФЕРЫ

Температура в высотном профиле атмосферы

$$T = T^* + \xi \left(H - H^* \right)$$

где Т* — температура нижней границы слоя атмосферы;

*H** — высота нижней границы слоя атмосферы;

ξ — градиент температуры по высоте.

Геопотенциальная	Температура T^* ,	Градиент температуры ξ,
высота H^* , км	К	К/км
0,00	288,15	-6,50
11,00	216,65	0,00
20,00	216,65	+1,000
32,00	228,65	(+2,80)

Рис. 1.1. Высотный профиль температуры Т
 _____ стандартная атмосфера;
 _____ экстремальные профили Северного полушария;
 _____ умеренные широты, зима;
 _____ умеренные широты, лето, 1 - - - зима
 2 - - - осень, 3 - - - весна, лето

ТЕМПЕРАТУРА АТМОСФЕРЫ

- Высота Температура Характеристика
- Тропосфера 0–12 км Падает на 6° на каждый км Тропосфера нагревается инфракрасным излучением земной поверхности.
- Стратосфера 12-25 км -50° С
- 25–50 км Немного растет, на высоте 50 км около 0° С Температура растет за счет реакции разложения озона, которая сопровождается выделением теплоты.
- Мезосфера 50-85 км Озон поглощает ультрафиолетовое излучение в области (200-300 нм), защищая жизнь на поверхности Земли.
- Термосфера 85–800 км Температура увеличивается с высотой. Днем на высоте 400 км около 1500° С Ультрафиолетовое и рентгеновское излучение Солнца ионизует молекулы воздуха. Поэтому термосферу называют ионосферой. От ионосферы отражаются радиоволны. Становятся преобладающими водород и гелий.
- Экзосфера Свыше 800 км Молекулы движутся с огромными скоростями, иногда улетая в межпланетное пространство

высотный профиль давления атмосферы

давления

 $P = P^* \left(\operatorname{trpu}_{\overline{T}}^{\xi} (H0, H^*) \right)^{-\frac{g_c}{\xi R}} \quad \xi \neq$ $P = P^* \operatorname{expp} \left(-\frac{g_c}{RT} (H - H^*) \right) \quad \xi =$

профиль

Высотный

где *P** — давление на нижней границы сл атмосферы;

 $R - удельная газовая постоянная. Высотный превоздуха <math>\rho = \frac{P}{RT}$

ВЫСОТНЫЙ ПРОФИЛЬ ИНДЕКСА ПРЕЛОМЛЕНИЯ ВОЗДУХА

По

определению,

индекс

преломления:

$$N_{\lambda} = (n-1) \cdot 10^{-6}$$

где n — коэффициент преломления.

$$\boldsymbol{\phi_{c}} = N_{\lambda c} \frac{P(h)}{\rho_{c}}^{\text{7a.}}$$

	Обозначение	Численное	Единица
	обозначение	значение	измерения
1.	Стандартное давление воздуха – P_c	101325,0	Па
	Стандартная плотность воздуха – ρ_c	1,2250	$\mathbf{k}\Gamma/\mathbf{M}^3$
	Термодинамическая температура Кельвина	200 15	Ľ
	для воздуха на уровне моря – T_c	200,15	А

1()

где
$$N_{\lambda c}$$
 — индекс преломления в
 $(N_{\lambda c}(h) = A + B \cdot \lambda^{-2} + C \cdot \lambda^{-2})$

где λ — длина волны.

Величина индекса преломления в стандартных условиях определяет показатель молекулярного рассеян воздуха.

Obobuouno	Численное	Единица
Обозначение	значение	измерения
Стандартное ускорение свободного падения – q_{c}	9,80665	м/c ²
Молярная масса воздуха – М	28,964420	кг/к моль
Универсальная газовая постоянная – <i>R</i> *	8314,32	Дж/(К·моль)
Удельная газовая постоянная воздуха – <i>R</i>	287,05287	Дж/(кг∙к)
Концентрация молекул на уровне моря – N_c	$25,471 \cdot 10^{24}$	M ⁻³
Радиус земли – г ₃	6356766	М
A	272,64	безразмерный
В	1,526	мкм ²
С	0,01623	MKM ⁴

ВЫСОТНЫЙ ПРОФИЛЬ АБСОЛЮТНОЙ ВЛАЖНОСТИ ВОЗДУХА

Водяной пар — наиболее изменчивый параметр атмосферы. Поэтому при решение задач с высокой достоверностью требует привлечения экспериментальных данных по влажности атмосфере на рассматриваемых трассах.

Изменение влажности атмосферы a(h) с высотой в умеренных средних широтах можно описать следующей формулой:

$$a(h) = a_{i} \cdot \exp\left[-\alpha_{i}\left(h - h_{i}\right)\right]$$

где і — номер слоя атмосферы;

- *h*_i высота нижней границы слоя;
- *a*_i абсолютная влажность воздуха на нижней границе *i*-го слоя, кг/м³;
- α_i коэффициент уменьшения влажности, км⁻¹

ВЫСОТНЫЙ ПРОФИЛЬ АБСОЛЮТНОЙ ВЛАЖНОСТИ ВОЗДУХА

	<i>i h_i</i> ,км	Зима	Лето
l		$a_i, \Gamma/M^3 \ \alpha_i, KM^{-1}$	$a_i, \Gamma/M^3 \ \alpha_i, KM^{-1}$
1	0	$4,8+0^{*}0,507$	1, 2 + 1 0,450
		(здесь и далее указан	
		+/- порядок величины)	
2	6	2,3-10,855	7,4-1 0,632
3	10	7,3-3 0,477	5,4-2 1,193
4	13	1,8-3 0,235	1,8-3 0,235
5	19	4,9-4 -0,084	4,9-4 -0,084
6	26	6,0-4 0,198	6.0-4 0,198

Изменчивость значений абсолютной влажности можно характеризовать средним

квадратическим отклонением, что показано в таблице.

Drease le rue	Зи	ма	Лето		
высота <i>n</i> , км	$a_i, \Gamma/M^3$	σ _а , км ⁻¹	$a_i, \Gamma/M^3$	σ_a , KM ⁻¹	
0	4,8	3,8	12,0	10,3	
1	3,2	2,3	10,1	7,1	
2	3,0	1,5	8,1	4,7	
3	1,3	1,0	5,6	3,8	
4	0,79	0,57	3,52	2,57	
7	0,12	0,17	0,74	0,95	

ВЫСОТНЫЕ ПРОФИЛИ ОСНОВНЫХ ГАЗОВЫХ компонентов

При энергетических расчетах ОЭС необходим учет поглощения

излучения парами воды и газами, для которых характерна сравнительно

Концентрации в атмосфере основных газов,

ME

поглощающих оптическое излучение

Компонента воздуха, по- глощающая излучение	CO ₂	O ₂	CH ₄	N ₂	N ₂ O	СО	O ₃	H ₂ O
Объемная	(320-	20,94	1,7.10-6	78,0	0,31.10-6	0,12.10-6	Летом до	(2-40)
концентрация	350) x		$(1,1.10^{-6})$		$(0,28\cdot10^{-6}),$	$(0,05\cdot10^{-6})$	7,0.10-0	X
С на уровне	10-6		-			_	Зимой до	10^{-2}
h = 0			1,7.10.6)			2,2.10-6)	$2,0.10^{-6}$	

Примечание. *) Содержание СО дано для Северного полушария [48], где оно больше, чем в Южном, на ~ 50 %.

	Газ	Содержание в сухом воздухе, %	Ba	риаци	и содеј атм	ржания юсферн	основ ых га	вных о зов по	оптиче высо	ески а те	КТИВН	ЫХ	
N2	Азот	78,08	Putcoma	N 1	0 ⁻² Па	N 1		λ7	nom	N	ppm	N	1010100
02	Кислород	20,95	b KM	¹ ^v O ₃ ^{, 1}	o ma	¹ ^v co ₂ ³	.pm	^{TV} CH ₄	,ppm	¹ V _{N2} O	,ppm	1°co,	ppm
Ar	Аргон	0.93	<i>n</i> , км	от	до	OT	до	OT	до	OT	до	OT	до
			0	0	80	270	330	0,7	5,0	0,10	0,35	0,04	0,3
CO ₂	Углекислый газ	0,03	5	1	150	270	330	0,7	5,0	0,10	0,35	0,05	0,24
Ne	Неон	0,0018	10	1	180	270	330	0,6	2,0	0,10	0,35	0,05	0,16
Не	Гелий	0,0005	15	1	350	280	400	0,6	2,0	0,10	0,35	0,02	0,07
Kr	Криптон	0,0001	20	40	350	280	400	0,6	2,0	0,08	0,26	0,01	0,08
H ₂	Водород	0.00005	25	30	250	280	400	0,6	2,0	0,06	0,14	-	-
112	Бодород	0,00003	30	10	160	280	400	0,2	1,2	0,04	0,11	-	-
Xe	Ксенон	0,000009		1									

I MOMMIN I . I U

13

РАЙОНИРОВАНИЕ ЗЕМНОГО ШАРА С УЧЕТОМ ТИПИЗАЦИИ ПАРАМЕТРОВ АТМОСФЕРЫ, ВЛИЯЮЩИХ НА ЕЁ ОПТИЧЕСКИЕ СВОЙСТВА

№ п/п	Наименование модели	Типичные районы				
1	Стандартная	Определяет средние условия атмо- сферы Земли				
2	Холодные районы с теплым летом – зима – лето	Районы в пределах 60°с.ш. и выше, в России – районы Тюмени, Улан-Удэ				
2 a	Субарктический климат — зима — лето	Соответствует модели атмосферы для 60° с.ш. США [12]				
3	Умеренный климат — зима — лето	Определяет бо́льшую часть России между 48° – 55° с.ш.				
4	Умеренно теплый климат — зима — лето	Украина, Молдавия, Западная Европа (Франция, Нидерланды, Германия)				
4 a	Среднеширотные районы — зима — лето	Соответствует модели атмосферы для 45° с.ш. США [12]				
5	Субтропики – зима – лето	Батуми, Север Африки				
6	Морской климат — зима — лето	Дальний Восток, часть Атлантическо- го океана				
7	Горный климат — зима — лето	Территории выше 1500 м над уровнем океана				
8	Тропический сухой климат — зима — лето	Средняя Азия, Ближний Восток				
9	Тропический влажный климат	-				
10	Морской тропический	Тихий Атлантический океаны				

Модели геофизических параметров атмосферы реализуют климатологический принцип, согласно которому наиболее адекватные расчеты можно получить, если учесть особенности формирования атмосферы в том или ином районе Земного шара.

14

РАЙОНИРОВАНИЕ ЗЕМНОГО ШАРА С УЧЕТОМ ТИПИЗАЦИИ ПАРАМЕТРОВ АТМОСФЕРЫ, ВЛИЯЮЩИХ НА ЕЁ ОПТИЧЕСКИЕ СВОЙСТВА

Модель геофизических параметров атмосферы будет полностью задана для расчета оптического ослабления в газах, если заданы:

- вертикальные профили температуры, давления и влажности для холодного и теплого сезонов года;

- профили оптически активных газов, содержание которых может быть принято постоянным;

- вертикальная стратификация озона, содержание которого имеет сезонный и широтный тренды.

Эти модели дают приемлемый в инженерных расчетах результат для состояний «ясно» и «малооблачно».

16 ОПТИКО-ГЕОФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ **АТМОСФЕРЫ**

Модели геофизических параметров атмосферы для конкретных

метеорологических условий должны быть дополнены следующими

параметрами, определяющими изменчивость «оптической погоды»:

- данные для расчета молекулярного рассеяния излучения;
- спектроскопические данные для расчета молекулярного

поглощения;

- данные для расчета аэрозольного ослабления;

- данные для расчета прозрачности в подоблачной зоне и в

облаках.

ЗАКОН БУГЕРА-ЛАМБЕРТА-БЭРА

Ослабление монохроматического оптического излучения в атмосфере подчиняется закону Бугера-Ламберта-Бэра:

$$E_{\rm S}(\lambda E) = S(\lambda, 0)^{-\alpha(\lambda)x}$$

где а —показатель (линейный) поглощения;

 $E_{\rm s}$ — плотность потока энергии фотонов при поглощении, Вт/м². Величина $\mathbf{l} = \alpha(\lambda) \cdot x$ называется оптической толщиной слоя атмосферы

или среды.

Прозрачность атмосферы:
$$\tau(\lambda, x) = \frac{E_{\rm S}(\lambda,)}{E_{\rm S}(\lambda, 0)}$$

Ослабление атмосферы:

$$a(\lambda) = 1 - \tau(\lambda)$$

КОЭФФИЦИЕНТ ПРОПУСКАНИЯ АТМОСФЕРЫ

Для немонохроматического ослабления коэффициент пропускания (прозрачности) атмосферы определяется через спектральные характеристики:

$$\tau(\lambda, x) = \frac{\int_{\lambda_1}^{\lambda_2} E_{\lambda} ds(\lambda, \cdot) \cdot \lambda}{\int_{\lambda_1}^{\lambda_2} E_{\lambda} s(\lambda, 0) d\lambda}$$

В общем случае коэффициент ослабления можно представить в виде произведения трех множителей, определяющих спектральные молекулярное поглощение, молекулярное рассеяние, аэрозольное ослабление, которое также определяется рассеянием и поглощением:

$$\tau(\lambda, x) = \tau_{\rm M}(\lambda, x) \cdot \tau_{\rm Mp}(\lambda, x) \cdot \tau_{\rm ap}(\lambda, x)$$

ПОКАЗАТЕЛЬ МОЛЕКУЛЯРНОГО РАССЕЯНИЯ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ. ЗАКОН РЕЛЕЯ

Показатель молекулярного рассеяния оптического излучения в атмосфере описывается законом Релея:

$$\alpha_{\rm Mp}(\lambda) = \left[\frac{32\pi^3 10^{12}}{3n_{\rm Vc}} \cdot \left(\frac{6+3\delta}{6-7\delta}\right) \cdot \frac{N_{\lambda c}}{\lambda^4}\right] \cdot \frac{\rho(h)}{\rho_c} = \alpha_{\rm Mpc}(\lambda) \cdot \frac{\rho(h)}{\rho_c}$$

где *п*_{ус} —концентрация молекул атмосферы на уровне моря;

*N*_{*λс}</sub> — индекс преломления в стандартных условиях;*</sub>

 δ — фактор деполяризации: δ = 0,035 мкм⁴/м.

Для инженерных расчетов подходит формула:

$$\alpha_{\rm Mp}^{\rm OTH}(\lambda) = \frac{\alpha_{\rm Mp}(\lambda)}{\alpha_{\rm Mp}(\lambda=1)} = \lambda^{-4,08}$$

ПОКАЗАТЕЛЬ МОЛЕКУЛЯРНОГО РАССЕЯНИЯ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ.

ЗАКОН РЕЛЕЯ

λ, мкм	α ^{orn} _{Mp}	λ, мкм	α ^{onh} wb	λ, мкм	α_{Mp}^{oth}
0,30	135,9	0,45	26,0	0,750	3,23
0,31	118,9	0,475	20,8	0,775	2,83
	1015	0.50			
0,32	104,5	0,50	16,9	0,800	2,48
0,33	92,1	0,525	13,9	0,825	2,19
0,34	81,6	0,550	11,5	0,850	1,941
0,35	72,5	0,575	9,56	0,875	1,724
0,36	64,6	0,600	8,04	0,900	1,537
0,37	57,8	0,625	6,80	0,925	1,374
0,38	51,8	0,650	5,80	0,950	1,233
0,39	46,6	0,675	4,97	0,975	1,109
0,40	42,0	0,700	4,28	1,0	1,00
0,425	32,7	0,725	3,71		

Прозрачность (%) приземных оптических трасс различной протяженности в области 0,3; 0,40; 0,55; 0,70 и 1,06 мкм, обусловленная только релеевским рассеянием [4,7])*

L	Длина волны λ, мкм						
L, KM	0,3	0,40	0,55	0,70	1,06		
1	86,5	95,8	98,9	99,6	99,9		
5	48,5	80,6	94,4	97,6	99,6		
10	23,6	65,0	89,0	95,7	99,2		
50	0,1	11,6	55,9	80,4	95,5		

ПОКАЗАТЕЛЬ МОЛЕКУЛЯРНОГО РАССЕЯНИЯ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ. ЗАКОН РЕЛЕЯ

21

77 МОЛЕКУЛЯРНОЕ ПОГЛОЩЕНИЕ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ В АТМОСФЕРЕ

100

80

МОЛЕКУЛЯРНОЕ ПОГЛОЩЕНИЕ ОПТИЧЕСКОГО 23 ИЗЛУЧЕНИЯ В АТМОСФЕРЕ

Расчетная модель молекулярного поглощения излучения газами атмосферы

должен иметь:

- обоснованный по достоверности метод расчета;
- исходные данные для применения метода расчета:
 - о спектрометрические данные по полосам поглощения набора газов;
 - о данные о пространственно-временном распределении поглощающих компонентов.

МОЛЕКУЛЯРНОЕ ПОГЛОЩЕНИЕ ОПТИЧЕСКОГО ² ИЗЛУЧЕНИЯ В АТМОСФЕРЕ

24

Коэффициент спектрального молекулярного пропускания представляется в виде:

$$\tau_{M}(v) = \exp\left(-\sum_{m} \left(\ell_{M}(v,m) + \ell_{MC}(v,m)\right)\right)$$

где *l*_м —оптическая толщина на трассе ОХ для линий поглощения *m*-го газа; *l*_{мс} — оптическая толщина на трассе ОХ для поглощения в континууме (непрерывная совокупность) *m*-го газа;

v — частота излучения.

Атмосферная трасса ОХ задается:

- длиной *L;*
- профилем температуры *T*(*x*) на трассе;
- полным атмосферным давлением P(x);
- парциальным давлением $P_{a}(x)$ каждого газа.

Оптическая толщина *l*_м для *линий поглощения m*-го газа на трассе

вычисляется интегрированием:

$$\boldsymbol{\ell}_{\mathrm{M}}(\mathbf{v},\boldsymbol{m}) = \int_{0}^{L} n_{\mathrm{Vm}} P_{\mathrm{a}}(x,m) G(\mathbf{v},m) d$$

где *п*_{ут} — концентрация молекул *m*-го газа атмосферы, 1/м³;

*Р*_а(*x*,*m*) — парциальное давление *m*-го газа атмосферы;

- v частота излучения;
- *G* спектр поглощения на частоте v:

$$G(\mathbf{v},m) = \sum_{i} S_{i}(T_{0}, S_{0m}, \mathbf{v}_{0}, T, E) \cdot g_{i}(\mathbf{v}, \mathbf{v}_{0}, P, P_{a}, \gamma_{air}, \gamma_{self}, n, \delta)$$

где g_i —контур *i*-ой линии;

*S*_i —интенсивность *i*-ой линии;

 T_0 — «опорная» температура = 296°К.

Параметры для расчета контура и интенсивности поглощения в *i*-ой линии можно объединить в два вектора:

$$\mathbf{m} = \left(\mathbf{v}_0, S_{0m}, E, \gamma_{air}, \gamma_{self}, n, \delta\right)^{\mathrm{T}}$$
$$\mathbf{a} = \left(T, P, P_{a}\right)^{\mathrm{T}}$$

где m — вектор данных базы HITRAN;

а —вектор атмосферных параметров;

v₀ — табличная частота линии поглощения;

 S_{0m} — интенсивность линии для «опорной» температуры 296°К;

E — энергия нижнего состояния для соответствующего квантового перехода;

 γ_{air} , γ_{self} — параметры воздушного уширения и самоуширения соответственно;

n — коэффициент температурной зависимости полуширины;

- δ коэффициент смещения линии от давления;
- температура воздуха;
- Р давление воздуха;

Р_ — парциальное давление *m*-го газа атмосферы.

Оптическая толщина *l*_{мс} поглощения в *континууме m*-го газа на трассе

вычисляется интегрированием:

$$\boldsymbol{\ell}_{\rm MC}(\mathbf{v},\boldsymbol{m}) = \int_{0}^{L} n_{\rm Vm} P_{\rm a}(x,m) G_{\rm c}(\mathbf{v},m) d$$

где *п*_{ут} —концентрация молекул *m*-го газа атмосферы, 1/м³;

*P*_a(*x*,*m*) — парциальное давление *m*-го газа атмосферы;

v — частота излучения;

*G*_с — спектр поглощения в континууме на частоте v:

$$G_{\rm c}(v,m) = v \cdot \frac{T_0}{T} \cdot th\left(\frac{c_2 \cdot v}{2T}\right) \left(C_{\rm s}(v) \cdot P_{\rm a} + C_{\rm f}(v) \cdot \left(P - P_{\rm a}\right)\right)$$

где C_{s} — коэффициент самоуширения для $H_{2}O$, CO_{2} и N_{2} ;

с, —вторая радиационная постоянная.

$$G_{\rm c}(\mathbf{v},m) = \mathbf{v} \cdot \frac{T_0}{T} \cdot th \left(\frac{C_2 \cdot \mathbf{v}}{2T}\right) \left(C_{\rm s}(\mathbf{v}) \cdot P_{\rm a} + C_{\rm f}(\mathbf{v}) \cdot \left(P - P_{\rm a}\right)\right)$$

 C_{f} —коэффициент уширения посторонними газами для $H_{2}O$, CO_{2} и N_{2} ;

АЭРОЗОЛЬНОЕ ОСЛАБЛЕНИЕ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ В АТМОСФЕРЕ

- **Дисперсная система** это система, образованная из двух и более фаз, которые на смешиваются и не реагируют друг с другом химически.
- **Аэрозоли** дисперсные системы, состоящие из мелких твердых и жидких частиц, взвешенных в газовой среде (воздухе).
- Туманы аэрозоли, дисперсная фаза которых состоит капелек жидкости.
- Дымы аэрозоли, дисперсная фаза которых состоит твердых частиц.
- Пыль грубодисперсная аэрозоль.
- Твердые частицы: вулканическая пыль и пепел, дым от пожаров, почвенная и космическая пыль.
- Размер твердых частиц: 0,1...10⁵ нм.
- Жидкие частицы: капли пресной и морской воды.
- Размер жидких частиц: 10²...10⁶ нм

КОЛИЧЕСТВО АЭРОЗОЛЯ, ПОСТУПАЮЩЕГО В АТМОСФЕРУ, МЛН Т/ГОД

Источник есте- ственного проис- хождения	Тропо- сфера	Страто- сфера	Источник есте- ственного проис- хождения	Тропо- сфера	Страто- сфера
	-	Первичны	е аэрозоли	1	
Почва и горные	130-	•	Промышленные	5-27	•
породы	8000		предприятия		
Океан (в основ-	300-	•	Пашни	2-80	•
ном NaCl)	1300				
Вулканы (пепел)	200-	4,0-50	Установки для	10-133	•
	1000		сжигания топлива		
Лесные пожары	3-360	•	Транспорт	1,0	0,01-
(сажа)				592.4-6	0,1
Космическая пыль	0,25–14	0,25–14			
Почва и горные	130-	•	Промышленные	5-27	•
породы	8000		предприятия		
Океан (в основ-	300-	•	Пашни	2-80	•
ном NaCl)	1300				
Вулканы (пепел)	200-	4,0–50	Установки для	10-133	•
	1000		сжигания топлива		
Лесные пожары	3-360	•	Транспорт	1,0	0,01-
(сажа)					0,1
Космическая пыль	0,25–14	0,25–14			

АЭРОЗОЛЬНОЕ ОСЛАБЛЕНИЕ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ В АТМОСФЕРЕ

- В задачах расчета прохождения излучения через аэрозольное излучения применяют теорию Ми.
- В предположении сферичности частиц аэрозоля показатель рассеяния излучения можно определить по формуле:

$$\alpha(\lambda) = n_{\rm V} \int \pi \cdot r^2 K(\rho, m) \cdot f_{\rm n}(r) dr$$

где *n*_v — концентрация частиц в атмосфере, 1/м³;

r — радиус частиц аэрозоля;

К — фактор эффективности ослабления, расчетные значения которого собраны в справочных изданиях (Зельманович И.Л. Таблицы по светорассеянию / И.Л. Зельманович, К.С. Шифрин. – Т. III. – Л.: Гидрометеоиздат, 1968.)

f_n — функция распределения частиц аэрозоля по размерам.

РАСПРЕДЕЛЕНИЕ ЧАСТИЦ АЭРОЗОЛЯ ПО РАЗМЕРАМ

 К. Уитби установил, что спектр распределения частиц по размерам формируется более чем тремя законами распределений, что может быть аппроксимировано логарифмически-нормальным распределением вида:

$$f_{n}(r) = \sum_{j=1}^{k} \frac{n_{\text{Vj}}}{\ln(10)\sqrt{2\pi\sigma_{lj}}} \exp\left(-0.5\left(\frac{\lg r - \lg r_{\text{mj}}}{\sigma_{lj}}\right)^{2}\right),\$$

$$\sigma_{lj} = \operatorname{knew}_{lj}, \quad r \in [0,001; 32]$$

где *n*_{vi} — концентрация частиц *j* - ой фракции в атмосфере, 1/м³;

- r радиус частиц аэрозоля, мкм;
- *к* количество фракций;
- r_{ті} медианный радиус, мкм;
- σ_{гі} СКО распределения радиуса частиц, мкм.

МОДЕЛИ АО «ГИПО» РАСПРЕДЕЛЕНИЯ ЧАСТИЦ В АТМОСФЕРНОМ АЭРОЗОЛЕ

• Результаты натурных экспериментов АО «ГИПО» позволили определить 11 моделей атмосферного аэрозоля для основных типов континентальных воздушных масс:

Тип аэрозоля	Состав и происхождение
КП — континентальный пылевой аэрозоль умеренных широт (негигроскопичен)	КП ₁ —тонкодисперсная фракция «сульфатного аэрозоля» КП ₂ —грубодисперсная фракция I КП ₃ —грубодисперсная фракция II
КС —континентальный солевой аэрозоль (гигроскопичен)	КС ₁ —тонкодисперсная фракция (дробление частиц почвы) КС ₂ —аккумулятивная фракция КС ₃ —грубодисперсный солевой компонент (продукт выветривания солончаков)
МС —морской солевой аэрозоль (гигроскопичен)	 MC₁ —морская фракция I (тонкодисперсная фракция лопающихся пузырьков) MC₂ —морская фракция II (грубодисперсная фракция лопающихся пузырьков)
АП —аридный пылевой аэрозоль (негигроскопичен)	АП ₁ —пылевая фракция I (выветривание с песчаной почвы вторичных продуктов дробления) АП ₂ —пылевая фракция I (пылевая поземка)
СА —сажистый аэрозоль	Продукт загрязнения атмосферы

МОДЕЛИ АО «ГИПО» РАСПРЕДЕЛЕНИЯ ЧАСТИЦ В АТМОСФЕРНОМ АЭРОЗОЛЕ

$$f_{n}(r) = \sum_{j=1}^{k} \frac{n_{\text{Vj}}}{\ln(10)\sqrt{2\pi\sigma_{lj}} r} \exp\left(-0.5\left(\frac{\lg r - \lg r_{\text{mj}}}{\sigma_{lj}}\right)^{2}\right), \implies f_{n} = \sum_{j=1}^{k} n_{\text{Vj}} \cdot f_{nj},$$
$$\sigma_{lj} = \operatorname{Imedy}, \quad r \in [0,001; 32]$$

№ модели	Парам распред по раз r _{m oj}	иетры целения мерам σ_{l_j}	Характе веществени I компо- нент (мас-	еристики ного состава II компо- нент (мас-	Зависимость от относи- тельной влаж- ности воздуха	ндекс модели
			ca, %)	ca, %)		И
1	0,095	0,8	1,0 КП	-	-	KП ₁
2	0,562	0,9	1,0 KП	-	-	$K\Pi_2$
3	9,5	0,8	1,0 КП	-	-	KП ₃
4	0,005	1,1	1, 0 KC	-	+	КC ₁
5	0,095	0,8	1,0 KC	-	+	KC ₂
6	0,562	0,9	1,0 KC	-	+	КC ₃
7	0,21	0,71	0,3 KC	0,7 MC	+	MC_1
8	1,64	0,71	1,0 MC		+	MC_2
9	0,74	0,8	1,0 АП		-	$A\Pi_1$
10	9,5	0,8	1,0 AП		-	$A\Pi_2$

КОНЦЕНТРАЦИЯ ЧАСТИЦ РАЗЛИЧНЫХ ФРАКЦИЙ В РАЗЛИЧНЫХ ТИПАХ ВОЗДУШНЫХ МАСС

		1 ф	ракция	2 фра	кция	3 фр	акция	4 фр	акция	5 фр	акция	6 фра	кция
Nº MO JELIN	Воздушная масса	индекс модели	<mark>n_{V1} см⁻³</mark>	индекс модели	n _{V2} см ⁻³	индекс модели	n _{V3} см⁻³	индекс модели	n _{V4} , см⁻³	ИНДСКС МОДСЛИ	n _{V5} , см ⁻³	индекс модели	n _{V6} , см ⁻³
1	KAB	KC ₁	5,8x10 ⁴	$K\Pi_1$	65								
2	КУВ (лето)	KC ₁	11,6x10 ⁺	KC ₂	27	KC ₃	0,166	$K\Pi_1$	32	$K\Pi_2$	0,45	CA ₁	10 ⁴
3	КУВ	KC1	5,8x10⁴	KC ₂	175	KC3	0,276	$K\Pi_1$	55	$K\Pi_2$	0,75	CA ₁	10 ⁴
	(весна-												
	осень)												
4	ВКУВ	KC ₁	5,8x10 ⁴	KC_2	113	KC3	2,7	$K\Pi_1$	130	$K\Pi_2$	7,3	CA_1	10 ⁺
	(местный												
	TB)												
5	ВКУВ	KC1	5,8x10 ⁴	KC_2	113	$K\Pi_1$	270	$K\Pi_2$	25			CA ₁	10 ⁴
	(мгла)												
6	МУВ (се-	KC_1	5,8x10 ⁴	$K\Pi_2$	0,45	MC_1	19,4	MC_2	0,0193				
	верное по-												
	бережье)	2 X			5	2			· · · · · ·				
7	МУВ (юж-	KC1	5,8x10 ⁴	KC ₂	27	$K\Pi_2$	5,8	MC_1	14,2	MC_2	0,0158		
	ное побе-												
	режье)												

ВЕРТИКАЛЬНАЯ СТРАТИФИКАЦИЯ АЭРОЗОЛЯ (БЕЗОБЛАЧНО)

- Вертикальный профиль атмосферного аэрозоля описывается *трехслойной моделью*, которая учитывает *суточную* (день и ночь) и *сезонную* (лето и зима) изменчивость.
- Вертикальный профиль атмосферного аэрозоля определяется по вертикальной стратификации показателя аэрозольного ослабления α₀₅₅ = α(λ₀) для длины волны λ₀ = 0,55 мкм.
- Вертикальный профиль атмосферного аэрозоля может быть определен четырьмя параметрами:
- $\alpha_0 = \alpha_{055}(H=0), \alpha_1, \alpha_2, H_1, H_2$
- α₀: показатель аэрозольного ослабления на опорной длине волны λ₀ = 0,55 мкм связан с метеорологической дальностью видимости МДВ: S_M = 3,91 / α₀₅₅(H=0).

Лето, осень, весна:

$$\begin{aligned}
&\text{Зима} \\
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_1 = const, \ H_1 \le h \le H_2; \\
&\alpha_T \exp\left(\frac{H_2 - h}{8}\right), \ h > H \ ,
\end{aligned}$$
Зима
$$\begin{aligned}
&\text{Зима} \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le h \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \left(\frac{\alpha_0 - \alpha_1}{H_1}\right) \cdot h, \ 0 \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \alpha_0 - \alpha_0 - \alpha_0} \cdot h, \ 0 \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \alpha_0 - \alpha_0 - \alpha_0} \cdot h, \ 0 \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \alpha_0 - \alpha_0 - \alpha_0} \cdot h, \ 0 \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \alpha_0 - \alpha_0 - \alpha_0} \cdot h, \ 0 \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \alpha_0 - \alpha_0 - \alpha_0} \cdot h, \ 0 \le H_1; \\
&\alpha_0(h) = \begin{cases}
&\alpha_0 - \alpha_0 - \alpha_0}$$

ЭМПИРИЧЕСКАЯ МЕТОДИКА РАСЧЕТА ПОКАЗАТЕЛЯ АЭРОЗОЛЬНОГО ОСЛАБЛЕНИЯ

- «Оптическая погода» группы ситуаций в атмосфере, характеризуемые следующими параметрами:
 - ✓ метеорологическая дальность видимости МДВ *S*_м;
 - ✓ относительная влажность воздуха *f*;
 - температура воздуха Т;
 - синоптический критерий: положение восточно-европейского полярного фронта.
- Показатель аэрозольного ослабления:

$$\alpha_{\rm a}(\lambda) = \alpha_{055} \left(n_0 + n_1 \cdot \lambda^{-n_2} \right)$$

- где α₀₅₅ показатель аэрозольного ослабления на опорной длине волны λ₀ = 0,55 мкм;
- n₀, n₁ n₂ —эмпирические коэффициенты.
- Метеорологическая дальность видимости расстояние, при котором под воздействием атмосферной дымки теряется видимость абсолютно чёрной поверхности, имеющей на этом расстоянии угловые размеры не менее 0,3 градуса и проектирующейся на фоне неба (дымки) у горизонта.

ЭМПИРИЧЕСКАЯ МЕТОДИКА РАСЧЕТА ПОКАЗАТЕЛЯ АЭРОЗОЛЬНОГО ОСЛАБЛЕНИЯ

< 40%	Тип оптиче- ской погоды	Синоптическая ситуация	Темпе- ратура воздуха,°С	относи- тельная влаж- ность, %	МДВ, км	n ₀	<i>n</i> ₁	<i>n</i> ₂
$+ n_1 \cdot \lambda^{-n_2}$	1. Дымка	Антициклоны внетропических широт. Область	-20+20	50-90	20-50	0.021	0.248	2.0
вычислений		оарического поля севернее Восточно- европейского полярного						
> 40%	2. Дымка	фронта (ВЕПФ)	-12+25	30-50	15-50	0.004	0.259	2.00
$(\cdot \lambda^{-n_2} + \beta_{\lambda}^*)$	3. Дымка 4. Дымка		_**_	50 - 90 85-90	10-20 5-10	0.071 0.057	0.348 0.472	1.45 1.056
, 	5.Туманная дымка		_44_	90-100	а)5-10 б)1-5	0.204 0.66	0.515 0.79	0.647 0.4
вычислении	6. Дымка	Антициклоны субтропических широт, теплые сектора цикло- нов		60-90	5-15	0.402	0.392	0.94
	7. Туманная дымка	Область барн- ческого поля южнее ВЕПФ		90-100	1-5	0.56	0.356	0.40

0

При влажности f < 40%

$$\alpha_{\rm a}(\lambda) = \alpha_{055} \left(n_0 + n_1 \cdot \lambda^{-n_2} \right)$$

погрешность вычислен < 10%.

При влажности f > 40%

$$\alpha_{a}(\lambda) = \alpha_{055} \left(n_0 + n_1 \cdot \lambda^{-n_2} + \beta_{\lambda}^* \right)$$

погрешность 10-15 %.

ЭМПИРИЧЕСКАЯ МЕТОДИКА РАСЧЕТА ПОКАЗАТЕЛЯ АЭРОЗОЛЬНОГО ОСЛАБЛЕНИЯ

При влажности f < 40%

$$\alpha_{\rm a}(\lambda) = \alpha_{055} \left(n_0 + n_1 \cdot \lambda^{-n_2} \right)$$

погрешность вычислений < 10%.

При влажности f > 40%

$$\alpha_{\rm a}(\lambda) = \alpha_{055} \left(n_0 + n_1 \cdot \lambda^{-n_2} + \beta_{\lambda}^* \right),$$

так как происходит конденсация капельводы, погрешность вычислений

10-15 %.

λ, мкм	β^*_λ	λ, мкм	β^*_{λ}	λ, мкм	β [*] λ	λ, мкм	β^*_{λ}
1,32	0	1,88	0,06	2,75	0,192	3,65	0,036
1,34	0,005	1,92	0,10	2,85	0,356	3,75	0,020
1,38	0,03	1,94	0,13	2,95	0,30	3,85	0,005
1,40	0,05	1,96	0,10	3,0	0,31	3,95	0
1,42	0,07	2,0	0,02	3,1	0,198	9,2	0
1,46	0,06	2,04	0	3,15	0,168	10,0	0,035
1,50	0,015	2,4	0	3,25	0,122	11,0	0,075
1,54	0	2,45	0,005	3,35	0,094	12,0	0,11
1,80	0,01	2,55	0,035	3,45	0,067	13,0	0,19
1,84	0,03	2,65	0,090	3,55	0,051	14,0	0,28

РАСЧЕТНЫЕ ПРИМЕРЫ ПРОЗРАЧНОСТИ АТМОСФЕРЫ МОДЕЛЬ «ГИПО»

41

ВЛИЯНИЕ МДВ. ВИДИМЫЙ ДИАПАЗОН МОДЕЛЬ «ГИПО»

💕 Атмосфера ГИПО		- 🗆 X
Трасса горизонтальная	Выбор модели атмосферы • стандартная атмосфера •	Выбор погодных условий ясное небо
Высота трассы, км 0 Высота цели, км 0.002 Дистанция, км	Температура приземного воздуха, °C 15 Относительная влажность, % 46 Метеорологическая дальность видимости в теплое время суток, км	Разность макс. и мин. температур в течение суток, *С 10 Время суток, ч 14 Спектральный диапазон, мкм левая граница 0 4
Прозрачность	ју	ка графика
.		
0.003		······
0.0025		
0.002		
0.0015		/-*
0.001		
0.0005		
0.4 0.425 0.45	0.475 0.5 0.525 0.55 0.575 0.6 0.	625 0.65 0.675
Расчет	1нтегральная прозрачность 0.000577	🗌 Запись в файл

💕 Атмосфера ГИПО		— C) X
Трасса горизонтальная	Выбор модели атмосферы стандартная атмосфера 💌	Выбор погодных условий ясное небо	•
Высота трассы, км 0 Высота цели, км 0.002	Температура приземного воздуха, *С 15 Относительная влажность, % 46	Разность макс. и мин. тек течение суток, °С 10 Время суток, ч 14	мператур в
Дистанция, км	Метеорологическая дальность видимости в теплое время суток, км	спектральный диапазон, левая граница правая	мкм граница
10	10	0.4 0.7	
0.055 0.05 0.045 0.045			
0.03	W		
0.015			
0.4 0.425 0.45	0.475 0.5 0.525 0.55 0.575 0.6 0.6	625 0.65 0.675	
Ин Расчет 0.	ятегральная прозрачность 01775	🗍 Запись в файл	

ВЛИЯНИЕ МДВ. СРЕДНИЙ ИК МОДЕЛЬ «ГИПО»

ВЛИЯНИЕ МДВ. ДАЛЬНИЙ ИК МОДЕЛЬ «ГИПО»

💕 Атмосфера ГИПО		- 🗆 X
Трасса горизонтальная	Выбор модели атмосферы Стандартная атмосфера 	Выбор погодных условий ясное небо
Высота трассы, км 0	Температура приземного воздуха, °C 15	Разность макс. и мин, температур в течение суток, °С 10
Высота цели, км 0.002	Относительная влажность, % 46	Время суток, ч 14
Дистанция, км 10	Метеорологическая дальность видимости в теплое время суток, км 10	Спектральный диапазон, мкм левая граница правая граница 8 12
Прозрачность	Ссерт 9 9.25 9.5 9.75 10 10.2510.510.75 тегральная прозрачность 4565	тка графика

ВЛИЯНИЕ ВЛАЖНОСТИ. ИК ДИАПАЗОН МОДЕЛЬ «ГИПО»

ВЛИЯНИЕ ВЛАЖНОСТИ. ВИДИМЫЙ И СРЕДНИЙ ИК ДИАПАЗОН МОДЕЛЬ «ГИПО»

Tpacca		B	ыбор модели	атмосферы	Выбор погодны	х условий	
горизонта	льная	• ст.	андартная ат	мосфера 💌	ясное небо	-	
Высота тра	ссы, км	Темпер	атура призен	много воздуха, °C	Разность макс. течение суток, °	и мин. темпе °С	ратур
0		15			10		
Высота цел	И, KM	Относил	гельная влаж	ность, %	Время суток, ч		
0.002		90			14		
Дистанция,	КМ	Метеор видимо	ологическая, сти в теплое	дальность время суток, км —	Спектральный д левая граница	циапазон, мкм правая гра	і іница
10		10			0.3	0.7	
0.055					· · · · · /		
0.055 0.05 0.045						-	
0.055 0.05 0.045 0.04							
0.055 0.05 0.045 0.04 0.035							
0.055 0.05 0.045 0.04 0.035 0.03					/		
0.055 0.05 0.045 0.045 0.035 0.035 0.035							
0.055 0.05 0.045 0.045 0.035 0.035 0.025 0.025					4		
0.055 0.05 0.045 0.045 0.035 0.035 0.025 0.025 0.025 0.015					4		
0.055 0.05 0.045 0.045 0.035 0.035 0.025 0.025 0.025 0.015 0.015					4		
0.055 0.05 0.045 0.045 0.035 0.035 0.025 0.025 0.015 0.015							
0.055 0.04 0.045 0.035 0.035 0.025 0.025 0.015 0.015 0.015	.3 0.3250.350.3	75 0.4 0.42	50.450.475 0	5 0.5250.550.575 (0.6 0.6250.650.675		
0.055 0.045 0.044 0.035 0.025 0.025 0.015 0.015 0.015 0.005	.3 0.3250.350.3	75 0.4 0.42 Интегральн	50.450.475 0.	5 0.5250.550.575 (эсть	0.6 0.6250.650.675		

