
Chapter 3
Selections

1

Motivations

If you assigned a negative value for radius in
ComputeAreaWithConsoleInput.java, the program
would print an invalid result. If the radius is
negative, you don't want the program to compute
the area. How can you deal with this situation?

2

Objectives

3

▪ To declare boolean variables and write Boolean expressions using relational
operators (§3.2).

▪ To implement selection control using one-way if statements (§3.3).
▪ To implement selection control using two-way if-else statements (§3.4).
▪ To implement selection control using nested if and multi-way if statements

(§3.5).
▪ To avoid common errors and pitfalls in if statements (§3.6).
▪ To generate random numbers using the Math.random() method (§3.7).
▪ To program using selection statements for a variety of examples

(SubtractionQuiz, BMI, ComputeTax) (§§3.7–3.9).
▪ To combine conditions using logical operators (&&, ||, and !) (§3.10).
▪ To program using selection statements with combined conditions (LeapYear,

Lottery) (§§3.11–3.12).
▪ To implement selection control using switch statements (§3.13).
▪ To write expressions using the conditional expression (§3.14).
▪ To examine the rules governing operator precedence and associativity (§3.15).
▪ To apply common techniques to debug errors (§3.16).

The boolean Type and Operators

The boolean data type declares a variable with the value
either true or false.

Often in a program you need to compare two values, such
as whether i is greater than j. Java provides six
comparison operators (also known as relational
operators) that can be used to compare two values. The
result of the comparison is a Boolean value: true or false.

boolean b = (1 > 2);

4

Relational Operators

5

Problem: Addition Question

6

AdditionQuiz

This example creates a program to let a first grader
practice additions. The program randomly
generates two single-digit integers number1 and
number2 and displays a question such as
"What is 7 + 9 = " to the student. After the student
types the answer, the program displays a message
to indicate whether the answer is true or false.

Animatio
n

if Statements (One Condition)

if (boolean-expression) {
 statement(s);
}

7

if (radius >= 0) {
 area = radius * radius * PI;
 System.out.println("The area"
 + " for the circle of radius "
 + radius + " is " + area);
}

An if statement is a construct that enables a program to specify
alternative paths of execution.

Note

8

Simple if Demo

9

SimpleIfDemo

Write a program that prompts the user to enter an integer. If the
number is a multiple of 5, print HiFive. If the number is divisible
by 2, print HiEven.

Animatio
n

İf-else Statement (2 conditions)

if (boolean-expression) {
 statement(s)-for-the-true-case;
}
else {
 statement(s)-for-the-false-case;
}

10

An if-else statement decides the execution path based on whether
the condition is true or false.

if-else Example

if (radius >= 0) {
 area = radius * radius * 3.14159;

 System.out.println("The area for the “
 + “circle of radius " + radius +
 " is " + area);
}
else {
 System.out.println("Negative input");
}

11

if Statements (more than 2 conditions)

12

13

if Statement (more than 2 conditions)

Trace if-else statement

14

if (score >= 90.0)
 System.out.print("A");
else if (score >= 80.0)
 System.out.print("B");
else if (score >= 70.0)
 System.out.print("C");
else if (score >= 60.0)
 System.out.print("D");
else
 System.out.print("F");

Suppose score is 70.0 The condition is false

Trace if-else statement

15

if (score >= 90.0)
 System.out.print("A");
else if (score >= 80.0)
 System.out.print("B");
else if (score >= 70.0)
 System.out.print("C");
else if (score >= 60.0)
 System.out.print("D");
else
 System.out.print("F");

Suppose score is 70.0 The condition is false

Trace if-else statement

16

if (score >= 90.0)
 System.out.print("A");
else if (score >= 80.0)
 System.out.print("B");
else if (score >= 70.0)
 System.out.print("C");
else if (score >= 60.0)
 System.out.print("D");
else
 System.out.print("F");

Suppose score is 70.0 The condition is true

Trace if-else statement

17

if (score >= 90.0)
 System.out.print("A");
else if (score >= 80.0)
 System.out.print("B");
else if (score >= 70.0)
 System.out.print("C");
else if (score >= 60.0)
 System.out.print("D");
else
 System.out.print("F");

Suppose score is 70.0 grade is C

Trace if-else statement

18

if (score >= 90.0)
 System.out.print("A");
else if (score >= 80.0)
 System.out.print("B");
else if (score >= 70.0)
 System.out.print("C");
else if (score >= 60.0)
 System.out.print("D");
else
 System.out.print("F");

Suppose score is 70.0 Exit the if statement

Note
The else clause matches the most recent if clause in the
same block.

19

Note, cont.
Nothing is printed from the preceding statement. To force
the else clause to match the first if clause, you must add a
pair of braces:
 int i = 1;
 int j = 2;
 int k = 3;
 if (i > j) {
 if (i > k)
 System.out.println("A");
 }
 else
 System.out.println("B");

This statement prints B.
Without block anything is printed.

20

Common Errors
Adding a semicolon at the end of an if clause is a common
mistake.

if (radius >= 0);

{

 area = radius*radius*PI;

 System.out.println(

 "The area for the circle of radius " +

 radius + " is " + area);

}

This mistake is hard to find, because it is not a compilation error
or a runtime error, it is a logic error.

This error often occurs when you use the next-line block style.

21

Wrong

TIP

22

CAUTION

23

Problem: Subtraction Question
This example creates a program to teach a first
grade child how to learn subtractions. The
program randomly generates two single-digit
integers number1 and number2 with number1 >=
number2 and displays a question such as “What
is 9 – 2 = ?” to the student. After the student
types the answer, the program displays whether
the answer is correct.

24

SubtractionQuiz

Problem: Body Mass Index

Body Mass Index (BMI) is a measure of health on
weight. It can be calculated by taking your weight in
kilograms and dividing by the square of your height
in meters. The interpretation of BMI for people 16
years or older is as follows:

25

ComputeAndInterpretBMI

Problem: Computing Taxes

The US federal personal income tax is calculated based
on the filing status and taxable income. There are four
filing statuses: single filers, married filing jointly,
married filing separately, and head of household. The
tax rates for 2009 are shown below.

26

Problem: Computing Taxes, cont.
if (status == 0) {
 // Compute tax for single filers
}
else if (status == 1) {
 // Compute tax for married file jointly
 // or qualifying widow(er)
}
else if (status == 2) {
 // Compute tax for married file separately
}
else if (status == 3) {
 // Compute tax for head of household
}
else {
 // Display wrong status
}

27
ComputeTax

Logical Operators

28

Operator Name Description

! not logical negation

&& and logical conjunction

|| or logical disjunction

^ exclusive or logical exclusion

The logical operators !, &&, ||, and ^ can be used to create a
compound Boolean expression.

Truth Table for Operator !

29

p !p Example (assume age = 24, weight = 140)

true false !(age > 18) is false, because (age > 18) is true.

false true !(weight == 150) is true, because (weight == 150) is false.

Truth Table for Operator &&

30

p1 p2 p1 &&

p2

Example (assume age = 24, weight = 140)

false false false (age <= 18) && (weight < 140) is false, because (age >

18) and (weight <= 140) are both false.

false true false

true false false (age > 18) && (weight > 140) is false, because (weight

> 140) is false.

true true true (age > 18) && (weight >= 140) is true, because both

(age > 18) and (weight >= 140) are true.

Truth Table for Operator ||

31

p1 p2 p1 || p2 Example (assume age = 24, weihgt = 140)

false false false

false true true (age > 34) || (weight <= 140) is true, because

(age > 34) is false, but (weight <= 140) is true.

true false true (age > 14) || (weight >= 150) is false,

because (age > 14) is true.

true true true

Truth Table for Operator ^

32

p1 p2 p1 ^ p2 Example (assume age = 24, weight = 140)

false false false (age > 34) ^ (weight > 140) is false,

because (age > 34) is false and (weight > 140) is false.

false true true (age > 34) ^ (weight >= 140) is true,

because (age > 34) is false but (weight >= 140) is true.

true false true (age > 14) ^ (weight > 140) is true,

because (age > 14) is true and (weight > 140) is false.

true true false

Examples

33

Here is a program that checks whether a number is divisible by 2
and 3, whether a number is divisible by 2 or 3, and whether a
number is divisible by 2 or 3 but not both:

TestBooleanOperators

Examples

34

System.out.println("Is " + number + " divisible by 2 and 3? " +

 ((number % 2 == 0) && (number % 3 == 0)));

System.out.println("Is " + number + " divisible by 2 or 3? " +

 ((number % 2 == 0) || (number % 3 == 0)));

 System.out.println("Is " + number +

 " divisible by 2 or 3, but not both? " +

 ((number % 2 == 0) ^ (number % 3 == 0)));

The & and | Operators

If x is 1, what is x after this
expression?

(x > 1) & (x++ < 10)

If x is 1, what is x after this
expression?

(1 > x) && (1 > x++)

How about (1 == x) | (10 > x++)?
(1 == x) || (10 > x++)?

35

Problem: Determining Leap Year?

36

LeapYear

This program first prompts the user to enter a year as an
int value and checks if it is a leap year.

A year is a leap year if it is divisible by 4 but not by 100,
or it is divisible by 400.

(year % 4 == 0 && year%100 != 0) || (year % 400 == 0)

Problem: Lottery
Write a program that randomly generates a lottery of a
two-digit number, prompts the user to enter a two-digit
number, and determines whether the user wins according
to the following rule:

37

Lottery

● If the user input matches the lottery in exact order, the
award is $10,000.

● If the user input matches the lottery, the award is
$3,000.

● If one digit in the user input matches a digit in the
lottery, the award is $1,000.

switch Statements
switch (status) {
 case 0: compute taxes for single filers;
 break;
 case 1: compute taxes for married file jointly;
 break;
 case 2: compute taxes for married file separately;
 break;
 case 3: compute taxes for head of household;
 break;
 default: System.out.println("Errors: invalid status");
 System.exit(1);
}

38

switch Statement Flow Chart

39

switch Statement Rules

40

switch (switch-expression) {
 case value1: statement(s)1;
 break;
 case value2: statement(s)2;
 break;
 …
 case valueN: statement(s)N;
 break;
 default: statement(s)-for-default;
}

The switch-expression must
be a value of char, byte,
short, or int type and must
always be enclosed in
parentheses.

The value1, ..., and valueN must
have the same data type as the
value of the switch-expression.
The resulting statements in the
case statement are executed when
the value in the case statement
matches the value of the
switch-expression.
Note that value1, ..., and valueN
are constant expressions, meaning
that they cannot contain variables
in the expression, such as 1 + x.

switch Statement Rules

The keyword break is optional,

but it should be used at the end
of each case in order to terminate
the remainder of the switch
statement. If the break statement
is not present, the next case
statement will be executed.

41

switch (switch-expression) {
 case value1: statement(s)1;
 break;
 case value2: statement(s)2;
 break;
 …
 case valueN: statement(s)N;
 break;
 default: statement(s)-for-default;
}

The default case, which is
optional, can be used to perform
actions when none of the specified
cases matches the
switch-expression. When the value in a case statement matches the value

of the switch-expression, the statements starting from
this case are executed until either a break statement or
the end of the switch statement is reached.

Trace switch statement

42

switch (day) {
 case 1:
 case 2:
 case 3:
 case 4:
 case 5: System.out.println("Weekday"); break;
 case 0:
 case 6: System.out.println("Weekend");
}

Suppose day is 2:

Trace switch statement

43

switch (day) {
 case 1:
 case 2:
 case 3:
 case 4:
 case 5: System.out.println("Weekday"); break;
 case 0:
 case 6: System.out.println("Weekend");
}

Match case 2

Trace switch statement

44

switch (day) {
 case 1:
 case 2:
 case 3:
 case 4:
 case 5: System.out.println("Weekday"); break;
 case 0:
 case 6: System.out.println("Weekend");
}

Fall through case 3

Trace switch statement

45

switch (day) {
 case 1:
 case 2:
 case 3:
 case 4:
 case 5: System.out.println("Weekday"); break;
 case 0:
 case 6: System.out.println("Weekend");
}

Fall through case 4

Trace switch statement

46

switch (day) {
 case 1:
 case 2:
 case 3:
 case 4:
 case 5: System.out.println("Weekday"); break;
 case 0:
 case 6: System.out.println("Weekend");
}

Fall through case 5

Trace switch statement

47

switch (day) {
 case 1:
 case 2:
 case 3:
 case 4:
 case 5: System.out.println("Weekday"); break;
 case 0:
 case 6: System.out.println("Weekend");
}

Encounter break

Trace switch statement

48

switch (day) {
 case 1:
 case 2:
 case 3:
 case 4:
 case 5: System.out.println("Weekday"); break;
 case 0:
 case 6: System.out.println("Weekend");
}

Exit the statement

Problem: Chinese Zodiac
Write a program that prompts the user to enter a
year and displays the animal for the year.

49

ChineseZodiac

Conditional Operator (?)
Syntax of conditional operator:

(boolean-expression) ? exp1 : exp2

if (num % 2 == 0)
 System.out.println(num + “is even”);
else
 System.out.println(num + “is odd”);

System.out.println(
 (num % 2 == 0)? num + “is even” :
 num + “is odd”);

50

Conditional Expressions
if (x > 0)
 y = 1
else
 y = -1;

is equivalent to

y = (x > 0) ? 1 : -1;

51

Operator Precedence
• var++, var--
• +, - (Unary plus and minus), ++var,--var
• (type) Casting
• ! (Not)
• *, /, % (Multiplication, division, and remainder)
• +, - (Binary addition and subtraction)
• <, <=, >, >= (Relational operators)
• ==, !=; (Equality)
• ^ (Exclusive OR)
• && (Conditional AND) Short-circuit AND
• || (Conditional OR) Short-circuit OR
• =, +=, -=, *=, /=, %= (Assignment operator)

52

Operator Precedence and Associativity

The expression in the parentheses is evaluated first.
(Parentheses can be nested, in which case the expression
in the inner parentheses is executed first.) When
evaluating an expression without parentheses, the
operators are applied according to the precedence rule
and the associativity rule.

If operators with the same precedence are next to each
other, their associativity determines the order of
evaluation. All binary operators except assignment
operators are left-associative.

53

Operator Associativity

 When two operators with the same precedence
are evaluated, the associativity of the operators
determines the order of evaluation. All binary
operators except assignment operators are
left-associative.

 a – b + c – d is equivalent to ((a – b) + c) – d
 Assignment operators are right-associative.

Therefore, the expression
 a = b += c = 5 is equivalent to a = (b += (c = 5))

54

Example
Applying the operator precedence and associativity
rule, the expression 3 + 4 * 4 > 5 * (4 + 3) - 1 is
evaluated as follows:

55

Debugging

The process of finding and correcting errors is called
debugging.
A common approach to debugging is to use a
combination of methods to narrow down to the part of
the program where the bug is located.
You can hand-trace the program (i.e., catch errors by
reading the program), or you can insert print statements
in order to show the values of the variables or the
execution flow of the program. This approach might work
for a short, simple program.
But for a large, complex program, the most effective
approach for debugging is to use a debugger utility.

56

Debugger

Debugger is a program that facilitates debugging.
You can use a debugger to

•Execute a single statement at a time.
•Trace into or stepping over a method.
•Set breakpoints.
•Display variables.
•Display call stack.
•Modify variables.

57

Debugging in NetBeans/Eclipse

58

