BCP 3

Раздел: Численные методы

1. Найти корень уравнения методом хорд с точностью до 0,1

B1. $x^3-2x-5=0$	B6. $x^3 + 3x - 2 = 0$
B2. $x^3 + 3x + 5 = 0$	B7. $x^3-4x-5=0$
B3. $x^3-12x+5=0$	B8. $x^3 + 3x - 6 = 0$
B4 $x^3 + x - 4 = 0$	B9. x ³ -2x-1=0
B5. $x^3-4x+6=0$	B10. $x^3 +6x-2=0$

2. Составить функцию f(x)

B8.

B9.

 X
 -1
 2
 3
 4

 y
 0
 1
 2
 3

 x
 -6
 1
 2
 3

 y
 0
 1
 2
 3

B2. x -2 1 3 4 y 0 1 2 3

B7. x -7 1 2 3 y 0 1 2 3

B3. x -3 1 2 4 y 0 1 2 3

 x
 -8
 1
 2
 3

 y
 0
 1
 2
 3

 X
 -4
 1
 2
 3

 y
 0
 1
 2
 3

 x
 -9
 1
 2
 3

 y
 0
 1
 2
 3

 X
 -5
 1
 2
 3

 y
 0
 1
 2
 3

B10. x -10 1 2 3 y 0 1 2 3

3. Вычислить определённый интеграл приближённо по формуле трапеций при заданном п и точно по формуле Ньютона - Лейбница. Найти относительную погрешность приближения (вычисления проводить с точностью до 0,0001)