Соотношения между тригонометрическими функциями одного аргумента

Основные тригонометрические тождества

Основное тригонометрическое тождество.

$$\cos^2 \alpha + \sin^2 \alpha = 1$$

Зависимость между синусом и косинусом:

$$\cos \alpha = \pm \sqrt{1 - \sin^2 \alpha} \qquad \sin \alpha = \pm \sqrt{1 - \cos^2 \alpha}$$

$$tg\alpha \cdot ctg\alpha = 1$$

$$tg^2\alpha + 1 = \frac{1}{\cos^2 \alpha} \qquad ctg^2\alpha + 1 = \frac{1}{\sin^2 \alpha}$$

$$C$$
инус, косинус, тангенс углов $(-\alpha)$ и α $\cos(-\alpha) = \cos \alpha$ $tg(-\alpha) = -tg\alpha$ $\sin(-\alpha) = -\sin \alpha$ $ctg(-\alpha) = -ctg\alpha$

Пример 1: Могут ли одновременно быть справедливы равенства:

 $a)\cos\alpha = \frac{1}{2}u\sin\alpha = \frac{1}{2}?$

Решение: m.k. рассматриваются функции sin αu cos α одного и того же аргумента, то должно выполнятся основное тригонометрическое тождество:

$$\cos^2 \alpha + \sin^2 \alpha = 1, Ho(\frac{1}{2})^2 + (\frac{1}{2})^2 \neq 1$$
=> $\cos \alpha = \frac{1}{2}u \sin \alpha = \frac{1}{2}$ одновременно справедливы быть не могут.

Пример 1: Могут ли одновременно быть справедливы равенства:

$$\delta)\cos\alpha = -\frac{\sqrt{3}}{2}u\sin\alpha = \frac{1}{2}?$$

Решение: проверим выполнение

основного тригонометрического тождества:

$$\cos^2 \alpha + \sin^2 \alpha = 1$$
, $(\frac{1}{2})^2 + (-\frac{\sqrt{3}}{2})^2 = 1$

Основное тригонометрическое тождество выполняется. Значит одновременно справедливы.

Выполнить самостоятельно: Могут ли одновременно быть справедливы равенства:

1)
$$\cos\alpha = \frac{\sqrt{3}}{3}u\sin\alpha = \frac{\sqrt{2}}{3};$$

$$2)\cos\alpha = -\frac{3}{5}u\sin\alpha = -\frac{4}{5};$$

3)
$$\cos \alpha = -\frac{\sqrt{23}}{5}u\sin \alpha = -\frac{\sqrt{3}}{5};$$

4)
$$\cos \alpha = 0.8u \sin \alpha = 0.2$$
?

Пример 2:Найти значения тригонометрических функций числа α , зная, что $\sin \alpha = 0,6$ и $\frac{\pi}{2} \boxtimes \alpha \boxtimes \pi$.

Решение: $m.к.\frac{\pi}{2} \boxtimes \alpha \boxtimes \pi$, $mo\alpha \in IIчІчетвер$, следовательно $\cos\alpha = -\sqrt{1-\sin^2\alpha} = -\sqrt{1-0.6^2} = -0.8;$ $tg\alpha = \frac{\sin\alpha}{\cos\alpha} = -\frac{0.6}{0.8} = -\frac{3}{4};$ $ctg\alpha = \frac{1}{tg\alpha} = \frac{1}{-\frac{3}{4}} = -1\frac{1}{3}.$

Выполнить самостоятельно:

1) sin α, tgα, ctgα, ecnu cos α =
$$-\frac{3}{5}u\frac{\pi}{2}$$
 \(\times \alpha \) \(\pi \),

2)
$$\cos \alpha$$
, $tg\alpha$, $ctg\alpha$, $ecnu\sin \alpha = -\frac{2}{5}u\pi \ \square \ \alpha \ \square \ \frac{3\pi}{2}$;

3)
$$\sin \alpha, tg\alpha, ctg\alpha, ecnu \cos \alpha = -\frac{5}{13}u\frac{3\pi}{2} \boxtimes \alpha \boxtimes 2\pi;$$

4) cos α, sin α, ctgα, ecnutgα =
$$\frac{15}{8}u\pi$$
 \mathbb{Z} α \mathbb{Z} $\frac{3\pi}{2}$;

5) sin
$$\alpha$$
, $tg\alpha$, $ctg\alpha$, $ecnu\cos\alpha = 0.8u0 \, \mathbb{Z} \, \alpha \, \mathbb{Z} \, \frac{\pi}{2}$;

6)
$$\sin \alpha, tg\alpha, \cos \alpha, ecnuctg\alpha = -3u\frac{3\pi}{2} \boxtimes \alpha \boxtimes 2\pi;$$

Пример 3:Упростить:

$$\sin^4 \alpha + 2\sin^2 \alpha \cos^2 \alpha + \cos^2 \alpha =$$

$$= \sin^2 \alpha (\sin^2 \alpha + \cos^2 \alpha) + \cos^2 \alpha =$$

$$= \sin^2 \alpha * 1 + \cos^2 \alpha = 1$$

Упростить выражение: 1) $\cos \alpha \cdot \tan \alpha - 2 \sin \alpha$; 2) $\cos \alpha - \sin \alpha \cdot \cot \alpha$; 3) $\frac{\sin^2 \alpha}{1 + \cos \alpha}$; 4) $\frac{\cos^2 \alpha}{1 - \sin \alpha}$.

Пример 3: докажите тождество:

$$\frac{(\sin\alpha + \cos\alpha)^2 - 1}{ctg\alpha - \sin\alpha\cos\alpha} = 2tg^2\alpha$$

$$\frac{(\sin\alpha + \cos\alpha)^{2} - 1}{\cot\alpha - \sin\alpha \cos\alpha} = \frac{\sin^{2}\alpha + 2\sin\alpha \cos\alpha + \cos^{2}\alpha - 1}{\frac{\cos\alpha}{\sin\alpha} - \sin\alpha \cos\alpha} =$$

$$= \frac{1 + 2\sin\alpha \cos\alpha - 1}{\frac{\cos\alpha - \sin^{2}\alpha \cos\alpha}{\sin\alpha}} = \frac{2\sin\alpha \cos\alpha * \sin\alpha}{\cos\alpha (1 - \sin^{2}\alpha)} =$$

$$= \frac{2\cos\alpha \sin^{2}\alpha}{\cos\alpha \cos^{2}\alpha} = 2* \frac{\sin^{2}\alpha}{\cos^{2}\alpha} = 2tg^{2}\alpha$$

Выполнить самостоятельно:

Доказать тождество:

1)
$$(1 - \cos \alpha) (1 + \cos \alpha) = \sin^2 \alpha$$
;

2)
$$(1 - \sin \alpha) (1 + \sin \alpha) = \cos^2 \alpha$$
;

3)
$$\frac{\sin^2\alpha}{1-\sin^2\alpha}=\operatorname{tg}^2\alpha;$$

4)
$$\frac{\cos^2\alpha}{1-\cos^2\alpha}=\operatorname{ctg}^2\alpha;$$

5)
$$\frac{1}{1 + tg^2 \alpha} + \sin^2 \alpha = 1;$$

5)
$$\frac{1}{1+ \operatorname{tg}^2 \alpha} + \sin^2 \alpha = 1$$
; 6) $\frac{1}{1+ \operatorname{ctg}^2 \alpha} + \cos^2 \alpha = 1$

Практическое занятие

	Вариант 1	Вариант 2
1	Записать основное тригонометрическое1	Записать основное тригонометрическое
	тождество	тождество
2	.Выразить из тригонометрического 2	Выразить из тригонометрического
	тождества функцию	тождества функцию
	$\ldots \sin \alpha = \ldots$	$\cos \alpha =$
3	.Найти , если 3	.Найти , если известно,
	известно, что $\cos \alpha$, $tg\alpha$, $ctg\alpha$	что $\sin \alpha, tg\alpha, ctg\alpha$
	$\cos \alpha = \frac{\sqrt{7}}{3}$ $0 < \alpha < \frac{\pi}{2}$	$\sin \alpha = \frac{\sqrt{6}}{4} \qquad \pi < \alpha < \frac{3\pi}{2}$
	$\frac{3}{2}$	4 2