Обобщение свойств углеводородов

Характерные химические реакции всех углеводородов

Характе- ристи- Угле- ки водороды		Первый гомолог	Вид гибриди- зации	Вид ковалентной связи	Дпина связи С-С, нм	Угол между связями	Характер- ный тип реакций	
Алканы	C _n H _{2n+2}	Н Н-С-Н Н	sp ³	σ _{C-C}	0,154	109 ⁰ 28′	Замещение, разпожение (крекинг)	
Цикло-		Н Н		σ _{c-c}	0.454	С3,С4 меньше 109°	Присоеди- нение	
алканы	C _n H _{2n}	H C C H	sp ³	σс-н	0,154	С ₅ ,С ₆ ит.д. ≈109°28′	Замещение	
Алкены	C _n H _{2n}	HC=C H	sp ²	σ _{C-C} σ _{C-H} π _{C-C}	0,134	120°	Присоеди- нение	
Алкины	C _n H _{2n-2}	н−с≡с−н	sp	σ _{C-C} σ _{C-H} 2π _{C-C}	0,120	180°	Присоеди- нение	
Арены	C _n H _{2n-6}	н-с С-с н н-с С-с н н-с С-с н	sp ²	σ _{C-C} , σ _{C-H} блэпектронное сопряжение в цикле	0,140	120°	Замещение	

Сравнительная характеристика углеводородов (продолжение)

	Алканы	Циклоалка ны	Алкены	Алкадиены	Алкины	Арены
Валентный угол	109°28'	В зависимост и от цикла	1200	1200	1800	1200
Виды изомерии	Изомерия цепи	Изомерия цепи;	Изомерия цепи; изомерия положения связи; пространственная изомерия;	Изомерия цепи; изомерия положения связи;	Изомерия цепи; изомерия положения связи;	Изомерия взаимного расположения заместителей (орто, мета, пара)
Прениуществ енное агрегатное состояние		газы;	$C_5 - C_{17} -$ жидкости;	$\mathbf{C_3} - \mathbf{C_4} - $ газы; $\mathbf{C_5} - \mathbf{C_{16}} - $ жидкости; $\mathbf{C_{18}} \dots$ твердые вещества		Газы — нет; $C_6 - C_9 -$ жидкости; $C_{10} \dots$ твердые вещества
Химические свойства	горение; замещение (реакции с галогенами и азотной кислотой)	горение; замещение (реакции с галогенами) ; присоединен ие (гидрирован ие); дегидрирова ние	горение; окисление (КМпО ₄); присоединение (галогены, Н ₂ , галогеноводороды; Н ₂ О); полимеризация	горение; окисление (КМпО ₄); присоединение (галогены, Н ₂ ,); полимеризация	горение; окисление (КМпО ₄); присоединение (галогены, Н ₂ , галогеноводород ы; Н ₂ О); полимеризация	горение; окисление (КМпО ₄) гомологов бензола; присоединение (H ₂ , Cl ₂ кат - свет); замещение (Вг ₂ кат – FeCl ₃ ; HNO ₃ кат – H ₂ SO ₄)
Качественн ые реакции		THE	Обесцвечивание рас воды (Br ₂) – качеств			

Приложение 3 СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА УГЛЕВОДОРОДОВ

	АЛКАНЫ	АЛКЕНЫ	АЛКИНЫ	ЦИКЛОАЛКАНЫ	АРЕНЫ	
Общая формула	CnH2n+2	CnH2n	CnH2n-2	CnH2n	C _n H _{2n-d}	
Тип гибридизации ключевых атомов углерода	sp³-	sp ² -	sp-	sp²-	sp²-	
Отличительный признак	Все связи одинарные С - С	Есть одна двойная связь С = С	Есть одна тройная связь С = С	Есть цикл	Есть бензольное кольцо	
Тип ковалентной связи	о-связи	б- и π-связи	G- И ⊼-СВЯЗИ	G-CERSH	G- и π-связи	
Характерные типы Углеродного скелета изомерии		Углеродного скелета, положения зратной связи, межклассовая с циклоалканами, геометрическая.	Углеродного скелета, положения кратной связи, межклассовая с алкадиенами.	Углеродного скелета, межклассовая с алкеками, геометрическая.	Углеродного скелета	
Типы наиболее характерных химических реакций	Радикальное замещение.	Присоединение, замещение, полимеризации.	Присоединение.	В зависимости от размеров цикла присоединение или замешение.	Электрофильное замещение.	
Отношение к раствору КМпО ₄	Не реагируют.	Обесцвечивание.	Обесцвечивание.	Не реагируют.	Окисление заместителей в цикле.	
Взаимодействие с галогенами	Радикальное замещение.	Присоединение	Присоединение.	Присоедивение или радикальное замещение	Электрофильное (по кольцу) или радикальное (по боковой цепи) замещение.	

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА СТРОЕНИЯ И СВОЙСТВ УГЛЕВОДОРОДОВ

Общик формули	Алканы $C_n H_{2n+2}$ $(n \ge 1)$	C_nH_{2n} $(n \ge 2)$	Алкины C_nH_{2n-2} $(n \ge 2)$	Apenta $C_nH_{2n-6} (n \ge 6)$		
Пример сосавнения	H H H	H H	H-C≡C-H	H—H H—H 6enson		
Тин гибридизации итомов услерода	sp ³	sp ²	sp	sp ²		
Basemust gray	109'28	- mi-	0.280	DE S. 104		
Epittoiers comes	1-6	2=6+5	3 = CI + 2IT	1,67 - 67 + 9,67.17		
030 ятемя уклерози	2,50	2,69	2,75	2,69		
Характористики связей Дания, ин Эмергия, кДк/моль	H — CH ₂ — CH ₃ 0,110 0,154 415 348	H — CH = CH ₂ 0,100 0,134 435.5 642	H — C = CH 0,106 0,120 463,5 836	H — Č === ČH 0,109 0,139 490		
Типы режирой Реакциянный контр межесулы	S _R , S _E	Operocusoresso A _K , A _E	Honorements A_K, A_K, A_N $-C \stackrel{2\pi}{=} C -$ Jamestone $-C \otimes C - H$	Savermenter S _k		

ПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ (АЛКАНЫ, ПАРАФИНЫ)

C, H,2n+2

СH₄ — метан С₅H₁₂ — пентан С₂H₆ — этан С₆H₁₄ — гексан С₇H₅ — пропан С₇H₁₆ — гептан С₇H₁₆ — октан

Возможна изомерия углеродного скелета:

Изомеры — совдинения, одинасеные по составу и молякулярной массе, но различающиеся по строению мил расположению атомов в гространстве (по свойствам).

соединения, состоящие из С и Н, в которых все связи атомов С, не затраченные на образование одинарных связей С—С, насыщены атомами Н

Номенклатура: сначала выбирают самую

длинную цепь. Название: N°_(min)заместителя— заместитель—цепь. Например, 2,3,3,-триметил-4-этилгехсан

 C^1, C^6 — первичные, C^5 — вторичный, C^2, C^4 — третичные, C^3 — четвертичный атомы углерода

Физические свойства: CH_4 — бесцветный газ, $t_{con} = -162$ °C. C_2 - C_4 — газы; C_5 - C_{15} — жидхости (при обычных условиях), далее — тв. вещества. t_{con} предельных углеводородов с неразветвленной цепью выше, чем t_{con} у соответствующих углеводородов с разветвленной цепью.

Строение:

возбужд сост.

 ср³-гибридизация 4 эквивалентн. σ-связи С—Н, направленные к вершинам тетраэдра, ∠ 109°28'

возможно свободное вращение вокруг связи С-С

1. **Годенто** ВН, + 20, =

меси с воздухом

2. Каталитическое

окисление (промыш-

Гомологи — с разрывом С-С

CH,CH,CH,CH, → 2CH,COOH

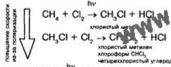
получение уксусной кислоты

соед Мп

взрывоопасны

ленность)

связи


Химические свойства: связи С-С и С-Н прочные, характеризуются низкой поляризуемостью, поэтому **свободнорадикальный механизм** реакций: CH_a : H_a \to CH_a : H_a : H_a

С-Н-связь

Реакции свободнорадикального замещения (свет, нагрев):

для гомологов СН $_3$ СН $_2$ СН $_2$ Вт 10% третичный > вторичный > первичный Нитрование (реакция М.Н. Коновалова): С $_0$ Н $_4$ + HNO $_3$ \rightarrow С $_6$ Н $_3$ NO $_2$ + H $_2$ O (т-ра выше 400°С) Дегидрирование: С $_4$ Н $_6$ \rightarrow С $_4$ Н $_8$ + Н $_2$ (Ni-катализатор, 360°С)

Получение (природный газ, нефть): 5ез изменения числа атомов С: 1. CH₂=CH₂ + H₃ \rightarrow CH₃-CH₃ 2. CH₃I + 2H \rightarrow CH₄ + HI CH₂I + HI \rightarrow CH₄ + I, или с увеличением числа <u>атомов</u> С: 3. Реакция Вюрца С₂H₅[I + 2Na + I] C₄H₅ \rightarrow C₄H₁₆ + 2NaI C уменьшением числа атомов С:

4.
$$CH_3 - C_0'$$
 + NaOH $\rightarrow CH_4 + Na_2CO_3$

5. Синтез из CO и $\rm H_2$: CO + $\rm H_2$ → смесь углеводор. + $\rm H_2$ O 6. Электролиз растворов солей карбоновых кислот (Кольбз) 2CH₂COO⁻ −2e → 2CO₂ + CH₂−CH₃

Крекинг

От англ. to crack — расщеплять нагревание нефти и нефтепродуктов без доступа воздуха, приводящее к разрыву связей С-С и образованию продуктов с меньшей молекулярной массой.

 $C_4H_{10} \xrightarrow{t} C_2H_6 + C_2H_4$ смесь продуктов разветвленные, непредельные.

Циклопарафины: углеводороды, в которых атомы С_пН_{2n} С образуют цепь (цикл), связи насыщены атомами Н

Названия: Цикло + алкан

метилциклобутан транс-1,2-диметилциклопропан Изомерия: углеводородного скелета + пространственная Химические свойства: подобны парафинам. Характерно свободнорадикальное замещение.

Следует отметить:

1. Для циклогексанов — легкая дегидрогенизация

Химические свойства алканов

Инертные вещества. Связи С-С и С-Н прочные, низкая поляризуемость → реакции по гомолитическому разрыву связей.

Окисление

1) горение (выделение большого количества теплоты Q)

$$C_nH_{2n+2} + (\frac{3n+1}{2})O_2 = nCO_2 + (n+1)H_2O + Q$$

 $n=1$ $CH_4 + 2O_2 = CO_2 + 2H_2O + Q$

2) каталитическое окисление (kat - соед. Mn)

II. Устойчивость к действию обычных окислителей (КМnO4, Вг2 вода) Качественная реакция

СпН2п+2 не обесцвечивает Вг2 воду и р-р КМпО4

III. Крекинг (разложение при t°)

$$CH_4 \stackrel{t^*}{=} C + 2H_2$$
 $C_4H_{10} \stackrel{t^*}{=} C_2H_6 + C_2H_4$

IV. Изомеризация (с "С" > 4, t°=100°С, kat AlCl₃)

V. Реакции замещения

1) с галогенами $CH_4 + Cl_2 \xrightarrow{hy} CH_3Cl + HCl$

hv — свет, t°, ценной $\text{CH}_3\text{Cl} + \text{Cl}_2 \to \text{CH}_2\text{Cl}_2 + \text{HCl}$ свободнорадикаль—

ный механизм $CHCl_3 + Cl_2 \rightarrow CCl_4 + HCl_{4етыреххлористый уелерод}$

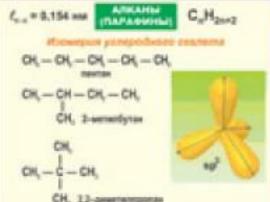
Mexanuзм: Cl₂ → Cl · + Cl ·

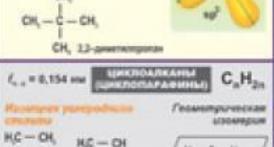
CH4 + Cl· → CH8 · + HCl

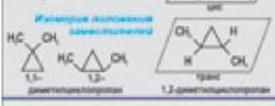
 $CH_3 \cdot + Cl_2 \rightarrow CH_3Cl + Cl \cdot$

и т.д. до обрыва

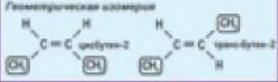
 $Cl \cdot + \cdot CH_3 \rightarrow CH_3Cl$

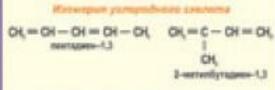

 питрование (реакция Коновалова) t°, р.

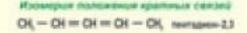

CH₄ +HONO₂ т → CH₃NO₂ +H₂O нитрометан


Ответ на вопрос № 19

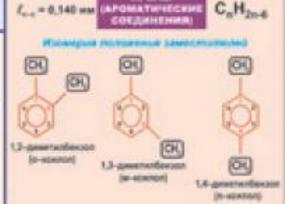
Ответ на воп Общая характери-	Характер	оистика
стика вещества	метана	этана
1. Молекулярная формула	CH ₄	C ₂ H ₆
2. Структурная формула	H H – C – H H	H H H-C-C-H
3. Электронная формула	Н Н:С:Н :	н н н : С : С : Н н н
4. Образование связей	H H → C ← H H	H H H→C- C←H H H
 Нахождение в природе 	1. Природный газ (90% СН ₄) 2. Образуется в результате разложения остатков растительных и природных организмов без доступа воздуха 3. Выделяется из каменно-угольных пластов	 Природный газ (3% C₂H₆)
 Получение в лаборатории 	$CH_3COONa_{(TB)} + NaOH_{(TB)}$ $-t = 300^{\circ}C$ $Na_2CO_3 + CH_4 \uparrow$	2CH ₃ I + 2Na → C ₂ H ₆ + 2NaI
7. Физические свойства	газ без цвета и запаха, почти в 2 раза легче воздуха, мало растворим в воде	газ без цвета и запаха
8. Химические свойства	a) $CH_4 + CI_2 \longrightarrow HCI + CH_3CI$ 6) $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$ B) $CH_4 \xrightarrow{t>1500^{\circ}C} C + 2H_2$ $2CH_4 \xrightarrow{t>1500^{\circ}C} C_2H_2 + 3H_2$	a) $C_2H_6 + Cl_2 \longrightarrow$ $C_2H_5Cl + HCl$ 6) $C_2H_6 + \frac{7}{2}O_2 \longrightarrow$ $2CO_2 + 3H_2O$ B) $C_2H_6 \xrightarrow{500^{\circ}C, Ni} C_2H_4 + H_2$
9. Применение	Топливо Сисходный продукт для получения а) СН ₃ ОН б) СН ₃ СООН в) синтетические каучуки 3. Синтез-газ Т = 800-900 °C kat: Ni, MgO или Al ₂ O ₃ а) СН ₄ + H ₂ O → CO + 3H ₂ б) СН ₃ + CO ₂ → CO + 3H ₂ 4. Наl-производные используются в качестве раствори-	


ОБЩИЕ СВЕДЕНИЯ О ГРУППАХ УГЛЕВОДОРОДОВ









C D. 527 sess

H,C -- CH, sonnotyrae

Arredvenu

C.H.

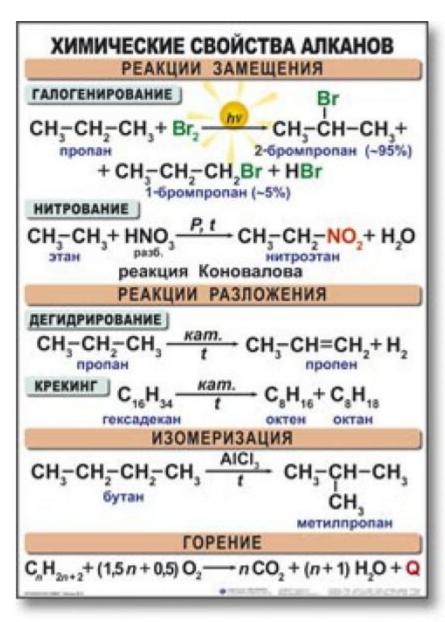
America

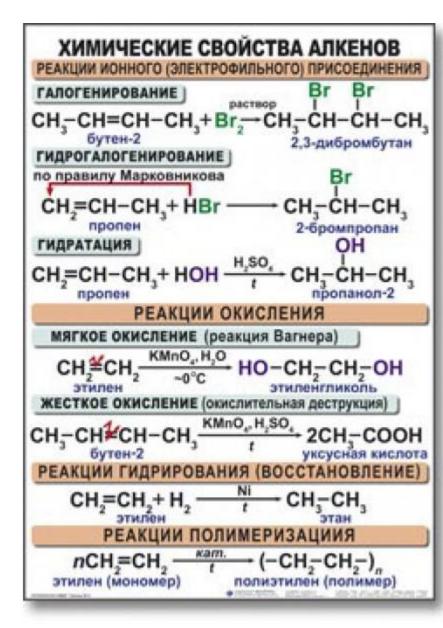
HC-CH

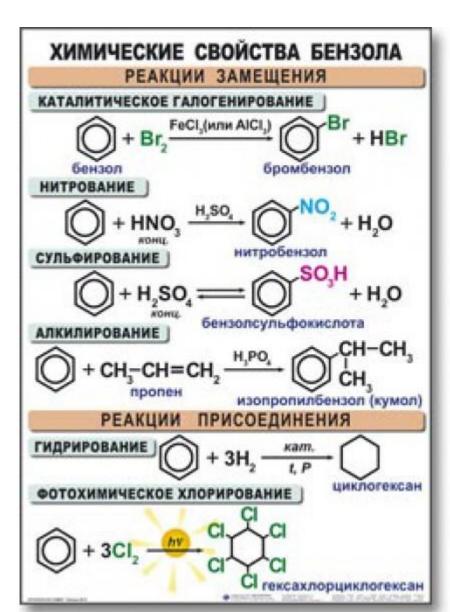
циклобутан

ХИМИЧЕСКИЕ СВОЙСТВА ДИЕНОВЫХ УГЛЕВОДОРОДОВ

Присоединение водорода – гидрирование


Присоединение водорода — гидрирование.
$$\begin{array}{c} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ CH_2 = CH - CH = CH_2 + H_2 & K \\ 1 & 2 - 6 ymeH \\ 1,3-6 ymaðueh & 1-6 ymeH \\ \end{array} + H_2 \rightarrow CH_3-CH_2-CH_2-CH_3 \qquad 6 ymah \\ \end{array}$$


2. Присоединение галогенов


3. Реакция полимеризации.

$$nCH_2 = CH - CH = CH_2 + CH_2 = CH - CH = CH_2 + CH_2 = CH_2 + CH_2 = CH_2 + CH_2 = CH_2 + CH_2 + CH_2 = CH_2 + CH_2 + CH_2 + CH_2 = CH_2 + CH_2 +$$

бутадиен или полидивинил

Химические свойства бензола

1.
$$\bigcirc$$
 + Br₂ $\xrightarrow{\text{FeBr}_3}$ \bigcirc + HBr

2.
$$+ \text{HNO}_3 \xrightarrow{\text{H}_2\text{SO}_4(k)} + \text{H}_2\text{O}$$

3.
$$\bigcirc$$
 + CH₃Cl $\stackrel{\text{AlCl}_3}{\longrightarrow}$ + HCl

4.
$$\bigcirc$$
 + H₃C \bigcirc C \bigcirc AlCl₃ \bigcirc + HCl

5.
$$+ H_2SO_4 (k)$$
 + $+ H_2O$

3.
$$\bigcirc$$
 + 3H₂ $\stackrel{\text{Ni, t}}{\longrightarrow}$

ХИМИЧЕСКИЕ СВОЙСТВА АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ

Бензол

1. Реакции замещения:

а) галогенирование

$$\bigcirc$$
 + Br₂ $\xrightarrow{AlBr_3}$ \bigcirc Br + HBr;

б) нитрование

$$\bigcirc \hspace{-0.5cm} \bigcirc \hspace{-0.5cm} + \hspace{-0.5cm} Ho \hspace{-0.5cm} - \hspace{-0.5cm} NO_2 \hspace{0.5cm} \xrightarrow{\hspace{0.5cm} H_2SO_4} \hspace{0.5cm} \bigcirc \hspace{0.5cm} \bigcap^{\hspace{0.5cm} NO_2} \hspace{0.5cm} + \hspace{-0.5cm} H_2O.$$

нитробензол

2. Реакции присоединения

а) гидрирование

пиклогексан

6) галогенирование

$$\bigcirc +3Cl_2 \xrightarrow{hv} \xrightarrow{Cl} \xrightarrow{Cl} \xrightarrow{Cl} Cl$$

гексахлорциклогексан

Окисление (горение):

$$2C_6H_6 + 15O_2 \longrightarrow 12CO_2 + 6H_2O + Q.$$

Толуол

🕠 Реакции замещения:

а) галогенирование

2,4,6-трибромтолуол

б) нитрование

2. Реакции присоединения:

а) гидрирование

$$\bigcirc$$
 -CH₃ + 3H₂ $\xrightarrow{\text{Pt}_1 t}$ \bigcirc -CH₃.

Окисление (горение):

а) горение

$$C_7H_8 + 9O_2 \longrightarrow 7CO_2 + 4H_2O + Q;$$

б) окисление по радикалу

ФИЗИЧЕСКИЕ СВОЙСТВА ГАЛОГЕНОПРОИЗВОДНЫХ

Галогенопроизводные это бесцветные жидкости со специфическим запахом, растворимы в спирте и эфире.

ХИМИЧЕСКИЕ СВОЙСТВА ГАЛОГЕНОПРОИЗВОДНЫХ

Алкины

Химические свойства

Взаимодействие с нуклеофильными реагентами

Присоединение спиртов

$$HC$$
 = CH + HO − C₂H₅ \xrightarrow{KOH} \to H₂C = CH − O − C₂H₅ ацетилен этилвиниловый эфир

Присоединение карбоновых кислот

$$HC$$
 $=$ $CH + CH_3 - C$ OH $=$ Hg^{+2}, H^+ H_2C $=$ $CH - O - C$ $=$ CH_3 винилацетат (виниловый эфир уксусной кислоты)

Алкадиены

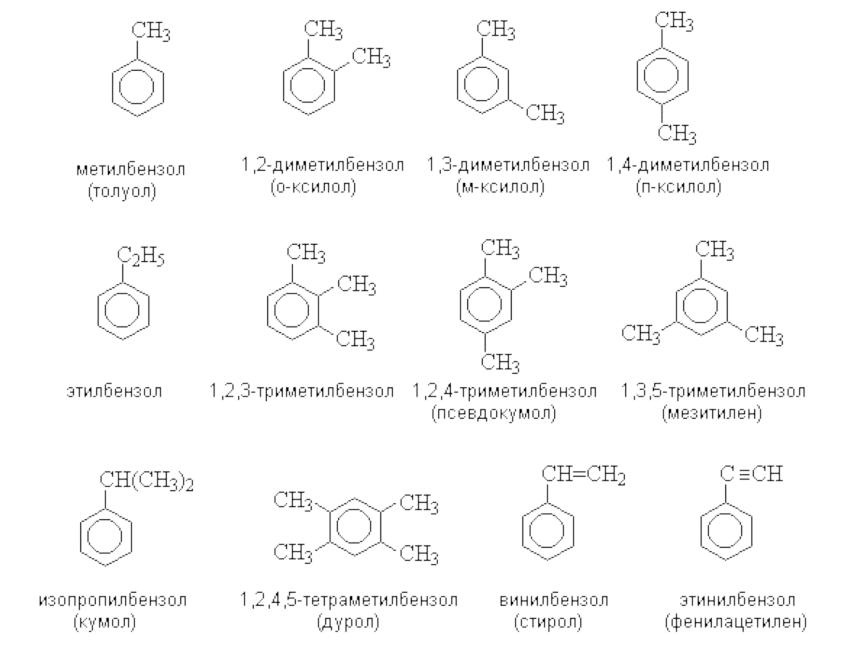
Химические свойства

Диеновые синтезы (реакция Дильса-Альдера)

$$HC$$
 CH_2
 $+$
 CH_2

диенофилы

3. Окисление алкинов


Ацетилен и его гомологи окисляются перманганатом калия с расщеплением тройной связи и образованием карбоновых кислот. Алкины обесцвечивают раствор KMnO4, что используется для их качественного определения.

$$R-C\equiv C-R' + 3[O] + H_2O \longrightarrow R-COOH + R'-COOH$$

$$5\text{CH}_3-\text{CH}_2-\overset{0}{\text{C}}\equiv\overset{0}{\text{C}}-\text{CH}_3 + 6\text{KMnO}_4 + 9\text{H}_2\text{SO}_4 = 5\text{CH}_3-\text{CH}_2-\overset{+3}{\text{COOH}} + 5\text{CH}_3-\overset{+3}{\text{COOH}} + 2\overset{+3}{\text{COOH}} + 2\overset{+3}{\text{COOH}} + 2\overset{+3}{\text{COOH}} + 2\overset{+3}{\text{COOH}} + 2\overset{+3}{\text{COOH}} + 2\overset{+3}{\text{COOH}} + 3\text{K}_2\text{SO}_4 + 4\text{H}_2\text{O},$$

$$5CH_3 - \overset{\circ}{C} \equiv \overset{-1}{C}H + 8KMnO_4 + 12H_2SO_4 = 5CH_3 - \overset{+3}{C}OOH + 5\overset{+4}{C}O_2 + 8MnSO_4 + 4K_2SO_4 + 12H_2O,$$
 $-3e \rightarrow \overset{+3}{C} \Big|_{8} \Big|_{9} \Big|_{9} = 1$ процесс окисления,

Получение аренов

Основными природными источниками ароматических углеводородов являются каменный уголь и нефть При коксовании каменного угля образуется каменноугольная смола, из которой выделяют бензол, толуол, ксилолы, нафталин и многие другие органические соединения.

Дегидроциклизация

$$\begin{array}{c|c}
CH_2 \\
H_2C & CH_3 \\
H_2C & CH_3
\end{array}$$

$$\begin{array}{c}
Cr_2O_3, t^{\circ}, p \\
CH_2
\end{array}$$

$$CH_2$$

Дегидрирование циклогексана и его производных

При дегидрировании этилбензола образуется производное бензола с непредельной боковой цепью – винилбензол (стирол)

С₆H₅-CH=CH₂ (исходное вещество для получения ценного полимера полистирола)


Алкилирование бензола галогеналканами или алкенами

$$H$$
 + CH_3CH_2C1 $\xrightarrow{AlCl_3}$ + HCl Этилбензол

Тримеризация алкинов над активированным углем (реакция Зелинского)

Алкины (ацетиленовые углеводороды)

Непредельные углеводороды, в молекуле которых имеется одна **тройная связь** между атомами углерода.

Номенклатура

Выбор главной цепи и начало нумерации определяется тройной связью.

$$\overset{\circ}{C}H_{3} - \overset{\circ}{C}H - \overset{\circ}{C} \equiv \overset{\circ}{C} - \overset{\circ}{C}H_{3}$$

$$\overset{\circ}{C}H_{3} = \overset{\circ}{C}H_{3} =$$

4-метилпентин-2

углеродного скелета с "с" ≥ 5 CH≡C-CH₂-CH₂-CH₃ CH≡ C-CH-CH₃

> СН₃ 3-метилбутин-

Изомерия->положение тройной (кратной) связи

$$CH \equiv C - CH_2 - CH_3$$
 $CH_3 - C \equiv C - CH_3$ бутин-1

классов соединений (алкадиены)

$$CH \equiv C-CH_2-CH_3$$
 $CH_2-CH-CH=CH_2$ бутин-1 бутин-1,3

пространственной нет

Физические свойства

 C_2 - C_4 газы, C_5 - C_{16} жидкости, С≥17 твердые вещества, растворимость в H_2 О небольшая,но больше чем у алкенов и алканов, ρ < 1 г/см³ , $T^e_{\text{кип}}$ (н)> $T^e_{\text{кип}}$ (разв), с увеличением Mr $T^e_{\text{кип}}$ увеличивается.

	Teamers works + H _C	Demagne Demons - H ₂	Canadana persona +Cl ₂ , Br ₂	Egeneras soga +Br ₂	+HCl	Falparages (appearage acgs:) +HOH	HO-NO ₂	Гидролиз (ред обыска) -НОН	+NH;	Водима раствор МаОН.	Спиртовий раствор NaOH.	Антивный металл Na	CHO Ago	Cu(OH)2	KMnO _c
Алканы CnH _{2n+2}	15	+	+ Замещение	-	ē	-	+		- 5	÷	35	127	353	÷	878
Циклоалканы CnH₂n	(+) для экспех (-) для больших	+	+	\$	(+) для мелых (-) для больших		ā	353	70	÷	155	55	858	2	Только феннял пропен (с трудом)
Алкены СпН ₂ п	+ Touseeas	+	+ Приссеаж	+ Upassea	+ Operata	+ Upusesa	ā	373	+ Tousesaks	•		155	15%	•	+
Алкины СпН ₂ п ₋₂	+ Udusesais	724	+ Toussesses	+ Tiduseerie	+ Operas	+ Tourseas	23		2	©	124	+	c Ag ₂ O +	্ৰ	+
Алкалиены СпН ₂ п ₋₂	+ Udusesans	72	+	+ Tiduseesaus	+ Upossess	+ Operas	25		20	0	724	82	120	8	+
Арены (БЕНЗОЛ) С ₆ Н ₆	+		+ 38868 +		-	-	+	-	20	2		82		-	1121
Арены (ТОЛУОД кумол, ксилол) СпН2п4	+	829	+ 3,000A + 3,000A	12	2	12	+	-	23	12		32	-	12	+
Стирол СпН ₂ п. ₃	+	1950	+	+	+	+		-	-50	÷	3.50	æ .	120	ē	+
Галоге <u>н;</u> производные СпН _{2п+1} Г	, ,	859	Januschuss CASSISSION DORWES	5	ē	ē	Ē:	+	+	+	+	+	83%	ē	323