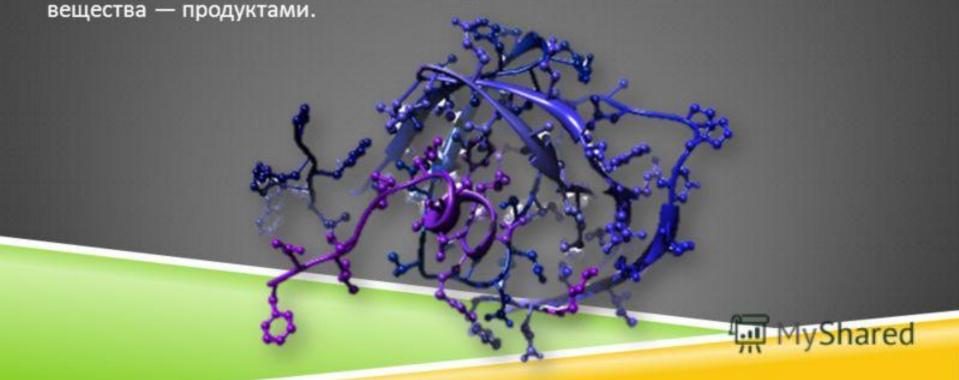
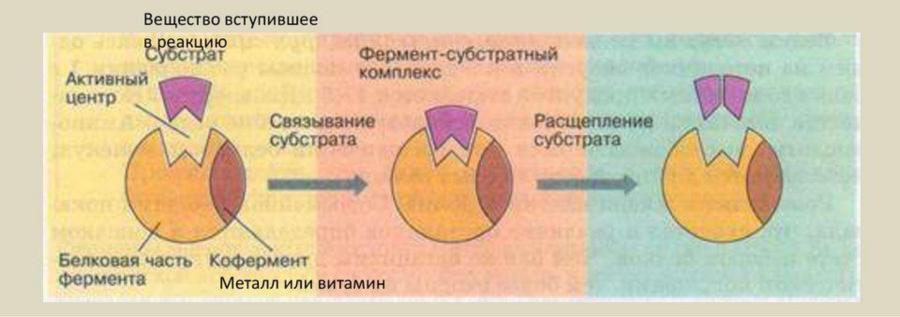
Федеральное государственное бюджетное образовательное учреждение высшего образования Уфимский государственный нефтяной технический университет

Как ферменты ускоряют химические реакции

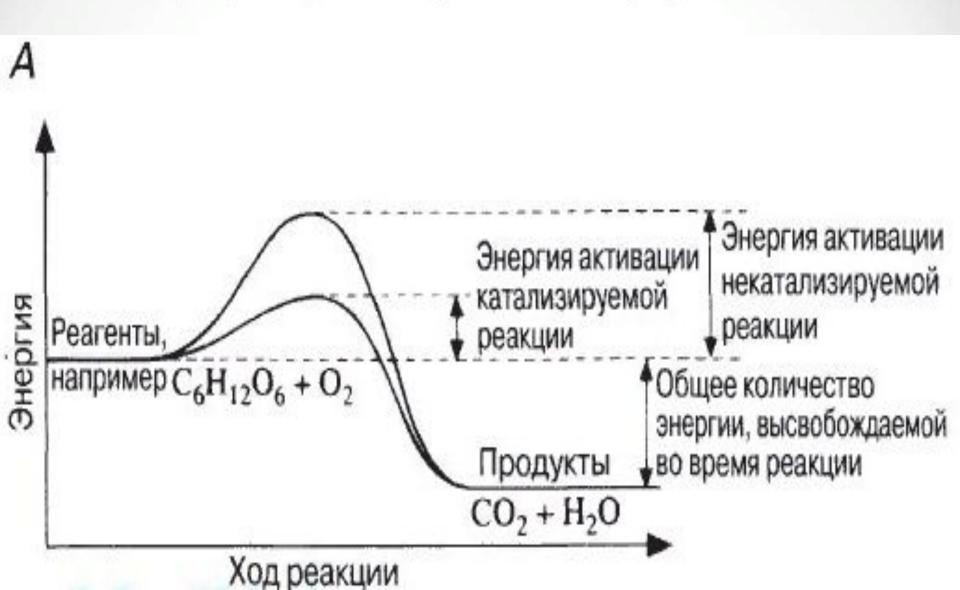

Выполнил ст.гр.: МТБ-02-17-01

Агайдарова

С.Ж.


Ферменты не являются компонентами реакций, а лишь ускоряют достижение равновесия увеличивая скорость как прямого, так и обратного превращения. Ферменты ускоряют самые различные реакции в организме. Так достаточно простая с точки зрения традиционной химии реакция отщепления воды от угольной кислоты с образованием СО2 требует участия фермента, т.к. без него она протекает слишком медленно для регулирования рН крови. Благодаря каталитическому действию ферментов в организме становится возможным протекание таких реакций, которые без катализатора шли бы в сотни и тысячи раз медленнее.

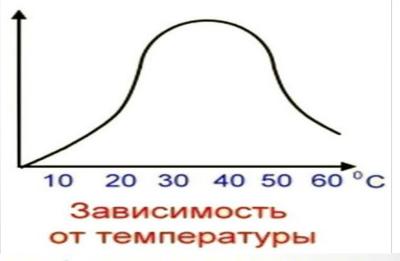
Ферменты, или энзимы (от лат. fermentum, греч. ζύμη, ενζυμον — закваска) —
обычно белковые молекулы или молекулы РНК (рибозимы) или их комплексы,
ускоряющие (катализирующие) химические реакции в живых системах. Реагенты в
реакции, катализируемой ферментами, называются субстратами, а получающиеся



Ферменты – белки, ускоряющие химические реакции.

Большинство реакция в организме идет при участии ферментов. На каждую реакцию существует свой фермент.

Энергией активации (E_1) называется количество энергии в калориях, необходимое для того, чтобы все молекулы 1 моля вещества при определенной температуре достигли переходного состояния, соответствующего вершине энергетического барьера.


Существует два основных пути повышения скорости химических реакций.

1) Повышение температуры

По уравнению Аррениуса зависимость константы скорости прямой химической реакции от температуры определяется уравнением

$$\mathbf{k}_1 = \mathbf{A}_1 \cdot e^{-\frac{E1}{RT}}$$
, соответственно обратной

$$k_{-1} = A_{-1} \cdot e^{-\frac{E_{-1}}{RT}}$$

В присутствии катализатора (фермента) скорость реакции тем быстрее, чем больше разница в энергиях активации некатализируемой (E_1) и катализируемой (E_1^*) реакций:

$$\frac{k_1^*}{k_1} = \frac{A_1^* e^{\frac{-E_1^*}{RT}}}{A_1 e^{-\frac{E_1}{RT}}} = \frac{A_1^*}{A_1} e^{-\frac{(E_1^* - E_1)}{RT}}$$

2) Добавление катализатора

Присутствие катализатора (фермента) в реакционной смеси не влияет на величину константы равновесия константы. Константа равновесия для некатализируемой реакции равна

$$K_p = \frac{k_1}{k_{-1}} = \frac{A_1 e^{-\frac{E_1}{RT}}}{A_{-1} e^{-\frac{E_{-1}}{RT}}} = \frac{A_1}{A_1} \ e^{-\frac{(E_1 - E_{-1})}{RT}} = \frac{A_1}{A_{-1}} \cdot e^{-\frac{\Delta H}{RT}}$$
, а для катализируемой

$$K_p^* = \frac{k_1^*}{k_{-1}^*} = \frac{A_1^* e^{\frac{-E_1^*}{RT}}}{A_{-1}^* e^{-\frac{E_{-1}^*}{RT}}} = \frac{A_1^*}{A_{-1}^*} \ e^{-\frac{(E_1^* - E_{-1}^*)}{RT}} = \frac{A_1^*}{A_{-1}^*} \cdot e^{-\frac{\Delta H}{RT}}$$

$$E_1 - E_{-1} = E_1^* - E_{-1}^* = \Delta H$$
, to $K_p = K_p^*$.

Ферменты повышают скорость химических реакций, которые в отсутствие фермента протекают медленно. Ферменты не могут влиять на положение равновесия ускоряемых ими реакций, при этом в ходе реакций они не расходуются и не претерпевают необратимых изменений.

Спасибо за внимание!