
Электромагниты и их применение

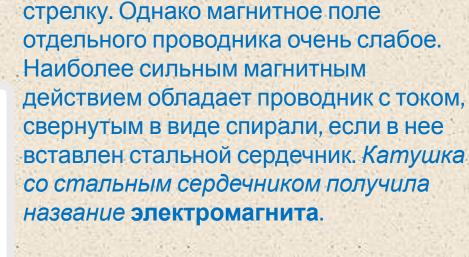
Сегодня на уроке мы:

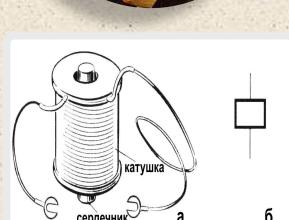
- □ Повторим пройденный материал по теме «Устройство СВЧ-печи»;
- □ Познакомимся с изобретателями электромагнита;
- □ Изучим принцип действия и область применения электромагнитов;
- □ Узнаем основные свойства электромагнитов;
- □ Попытаемся создать действующую модель простейшего электромагнита;

Цели:

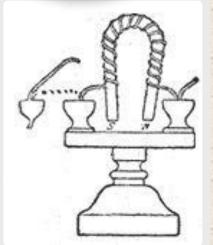
- 1.Изучить принцип действия и область применения электромагнитов
- 2. Развивать кругозор учащихся, практические навыки по чтению и сборке электрических цепей
- 3. Воспитывать чувство коллективизма, ответственности за проделанную работу

- Каков принцип действия СВЧпечи?
- 2. Каково назначение электрогриля?
- 3. Каковы особенности очистки жарочной камеры?





В 1820 г. обнаружил действие


электрического тока на магнитную

датский ученый физик (1777—1851)

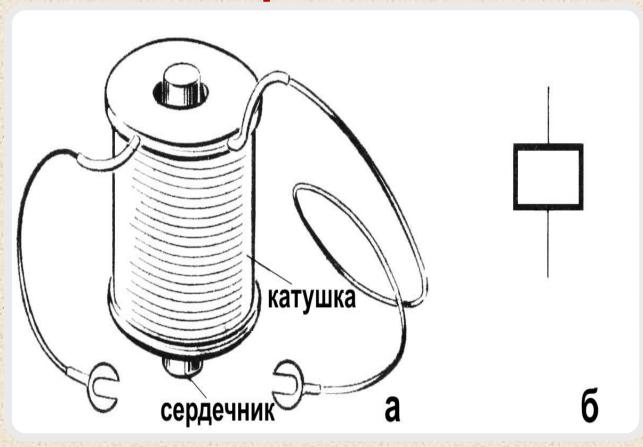
Уильям Стерджен

английский электротехник (1783-1850 гг.)

Первый в мире электромагнит, продемонстрированный Стердженом 23 мая 1825 г. Обществу искусств, представлял собой согнутый в подкову лакированный железный стержень длиной 30 и диаметром 1,3 см, покрытый сверху одним слоем изолированной медной проволоки. Электроэнергией он снабжался от гальванической батареи (вольтова столба). Электромагнит удерживал на весу 3600 г и значительно превосходил по силе природные магниты такой же массы. Это было блестящее по тем временам достижение.

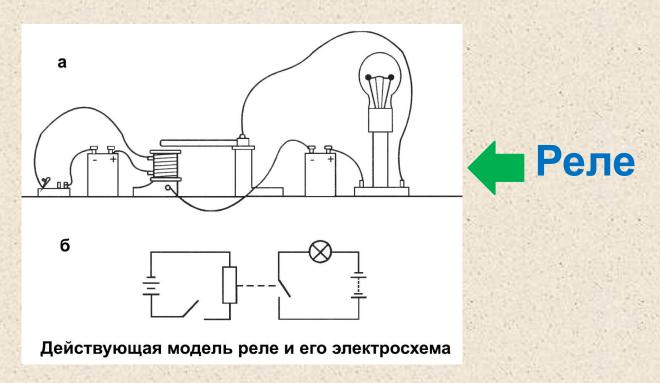
Использование электромагнитов:

Электрические машины

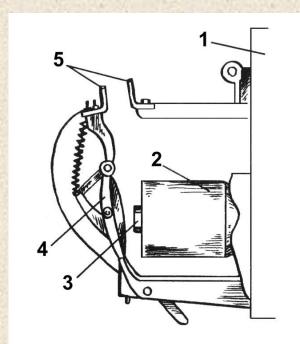

Выключатели

Измерительные приборы

Основные детали электромагнита:



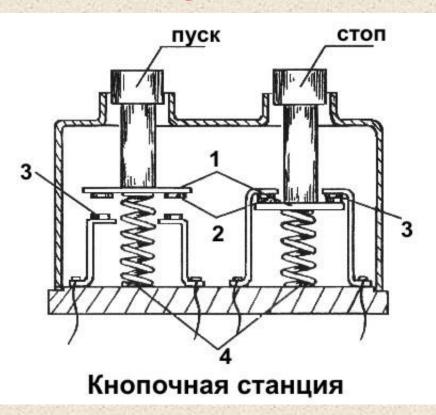
Подъемная сила электромагнита определяется:

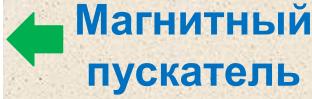


- 1. Числом витков катушки
- 2. Силой тока, проходящего по катушке
- 3. Магнитными свойствами сердечника

Использование электромагнита в пусковой аппаратуре:

Использование электромагнита в пусковой аппаратуре:




Однополюсный контактор:

- 1 изоляционная панель,
- 2 катушка, 3 стальной сердечник,
- 4 подвижный якорь,
- 5 силовые контакты

Использование электромагнита в пусковой аппаратуре:

Практическая работа: Сборка модели электромагнита

Медная проволока
Болт с гайкой
Две пластиковые
шайбы
Бумажный скотч
Изолента
Пара рук и немножко
фантазии:)

Практическая работа: Сборка модели электромагнита

Шаг 1

Собираем конструкцию, как показано на рисунке: на болт надеваем шайбы, между ними наматываем бумажный скотч, что бы исключить замыкание витков катушки болтом и слегка подтягиваем гайкой. Получили сердечник будущего электромагнита.

Сборка модели электромагнита

Шаг 2

Крепим конец проволоки на резьбе болта и, перейдя через гайку, начинаем аккуратно, виток к витку, наматывать проволоку на сердечник.

Практическая работа: Сборка модели электромагнита

Шаг 3

Когда первый слой будет готов, возвращаем проволоку к первому витку, проматываем слой бумагой и начинаем мотать второй виток.

Сборка модели электромагнита

Шаг 4

Повторяем последовательн ость операций несколько раз, наматывая аккуратно, слой за слоем витки катушки нашего будущего электромагнита.

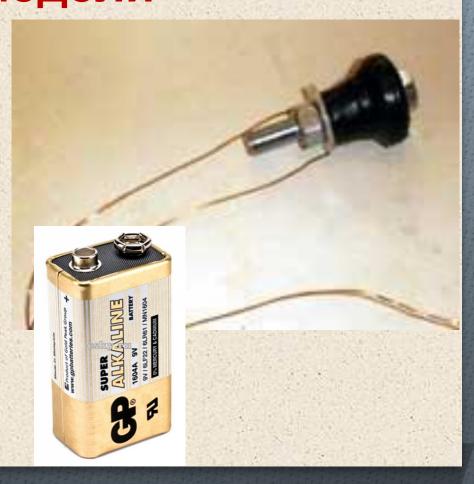
Сборка модели электромагнита

Шаг 5

Начиная, примерно, с пятого витка, уменьшаем количество витков, наматываемых в каждом слое. При этом плотность витков сохраняем неизменной. Таким образом, на конце катушки сформируется этакая бульба.

После намотки последнего слоя, катушку обмотаем изоляционной ПВХ лентой

Сборка модели электромагнита


Шаг 6

Теперь подсоединяем наш электромагнит к источнику тока, предварительно зачистив концы проволоки. Убеждаемся в надежности контакта.

Проверка работоспособности модели

Подносим электромагнит к рассыпанным скрепкам. Правильно собранная модель должна их притягивать

1. Что такое электромагнит?

А. Катушка со стальным сердечником

Б. Прибор, позволяющий включать и выключать электрические устройства

В. Катушка с пропущенным через нее постоянным током

2.Кто первым обнаружил действие электричекого тока на магнитную стрелку?

А. У. Стерджен

Б. Х.К. Эрстед

В. Э.Х. Ленц

3. Чем определяется подъемная сила электромагнита?

- А. Числом витков катушки
- Б. Силой тока, проходящего по катушке
- В. Магнитными свойствами сердечника
- Г. Все варианты верны

4. Как изображается электромагнит в схеме электрической цепи?

A.

Б.

B

Γ.

Домашнее задание

§ 21, вопросы N°1-4 стр.114

Рефлексия

Свое впечатление от урока вы можете оценить с помощью таблицы на дне коробки с элетромагнитом

1.На уроке я работал		активно / пассивно			88	12
2.Своей работой на уроке я		доволен / не доволен		100		
3.Урок для меня показался		коротким / длинным			1	3
4.За урок я	18	не устал / устал		37	1	
5.Мое настроение		стало лучше / стало хуже				())
6.Материал урока мне был		понятен / не понятен				
	1	полезен / бесполезен	700	916	12.	
		интересен / скучен	.02			
7.Домашнее задание мне	38	легким / трудным	1		N.	
кажется		интересно / не интересно		100	88	22

Спасибо за урок!

До встречи!