

Металлическая химическая связь

Проверка знаний

- 1. Какая химическая связь называется ковалентной?
- 2. Какая химическая связь называется ковалентной полярной?
- 3. Объясните, что означает понятие «электроотрицательность»?
- 4. Между атомами каких элементов образуется ковалентная полярная связь?

• Металлическая связь — химическая связь, обусловленная наличием относительно свободных электронов. Характерна как для чистых металлов, так и их сплавов и интерметаллических соединений.

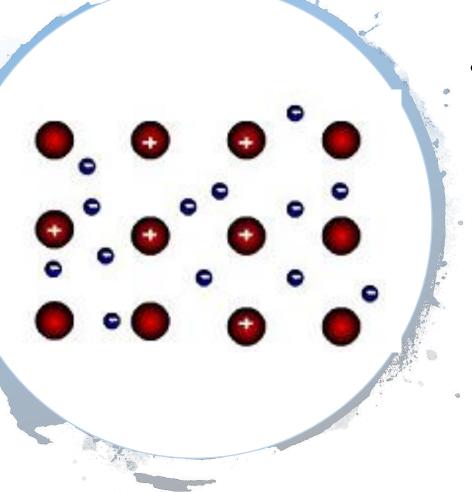
Запишите строение электронных оболочек атомов химических элементов-металлов:

А) лития

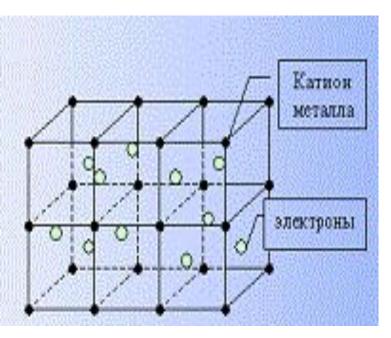
B) алюминия

Д) меди

Б) магния


Г) железа

Е) хрома


Особенности строения атомов металлов

- Имеют, как правило, 1-3 электрона на внешнем энергетическом уровне (исключения: Ge, Sn,Pb 4 электрона, Sb, Bi 5 электронов, Po 6 электронов).
- Имеют сравнительно большой радиус атомов.
- Атомы металлов имеют большое число свободных орбиталей.

Механизм образования металлической связи

• При сближении атомов металлов их свободные орбитали перекрываются, а валентные электроны получают возможность перемещаться с орбитали одного атома на свободные и близкие по энергии орбитали соседних атомов. Атомы при этом превращаются в положительно заряженные ионы. Таким образом, катионы металлов связаны общим электронным облаком.

- Металлической связью называют связь в металлах и сплавах, которая осуществляется совокупностью валентных электронов между атомами ионами металлов.
- •Образование металлической связи можно изобразить

 $\mathbf{M}^0 - n\bar{e} \Longleftrightarrow \mathbf{M}^{n+}$.

• Составить схемы образования металлической химической связи: а) для натрия; б) для кальция; в) для алюминия; г) для магния.

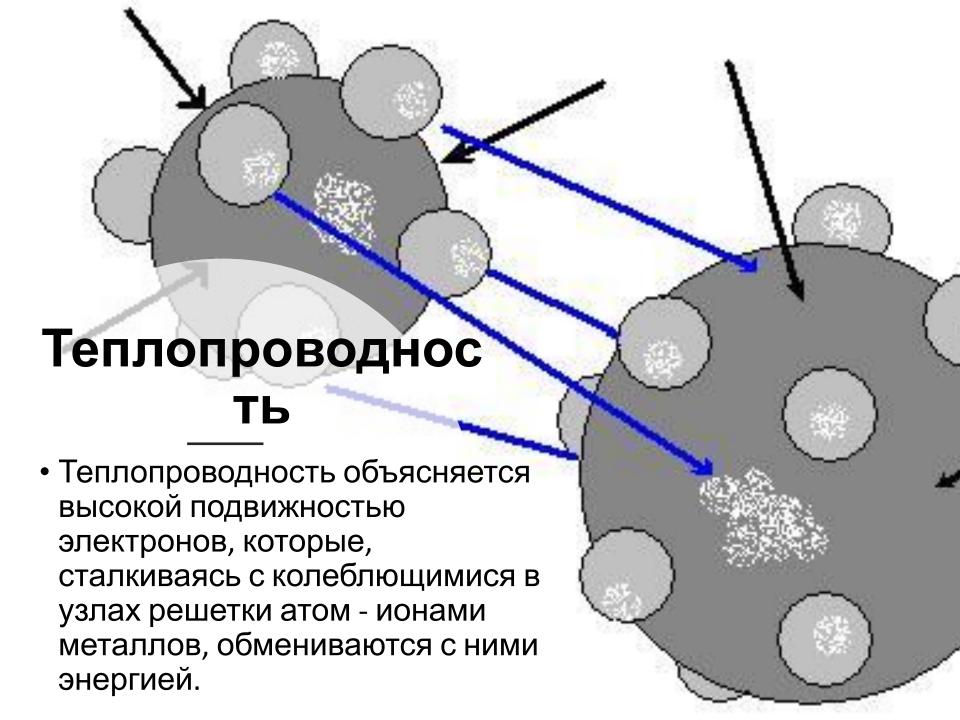
Сравнение металлической связи с ионной и ковалентной связями

Ковалентная связь	Металлическая связь		Ионная связь
Образование связи за счет общих электронов		Образование связей одновременно между большим числом частиц	
Пара электронов, образующая связь, гринадлежит двум связываемым атомам	Электроны, образующие связь, в равной мере принадлежат всем атомам	Взаимное притяжение между катионами металлов и электронным газом	Взаимное притяжение между катионами и анионами
Взаимное смещение атомов (при ударе) приводит к разрыву связи	Взаимное смещение катионов (при ударе) не приводит к разрыву связи		Взаимное смещение катионов и анионов (при ударе) приводит к разрыву связи

- Металлическая связь неразрывно связана с особым кристаллическим строением металлов и сплавов кристаллической решеткой, в узлах которой расположены ионы или атомы ионы.
- Металлическая кристаллическая решетка и металлическая связь определяют все наиболее характерные свойства металлов: ковкость, пластичность, электро- и теплопроводность, металлический блеск, способность к образованию сплавов.

Электропроводн ость

- Электропроводность это способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению.
- Лучшие проводники серебро и медь.



Пластичност ь

- Пластичность важнейшее свойство металлов, выражается в их способности деформироваться под действием механической нагрузки.
- Наиболее пластичны золото, медь, серебро.

Металлический блеск

- Гладкая поверхность металла или металлического изделия имеет металлический блеск, который является результатом отражения световых лучей.
- Высокой отражательной способностью обладают ртуть, серебро, палладий, алюминий.

Металлический блеск

• В порошке металлы теряют блеск, приобретая черную или серую окраску, и только магний и алюминий сохраняют её. Поэтому из алюминиевой пыли изготовляют краску серебрянку.

Сплавы

- Металлическая связь и металлическая кристаллическая решетка характерны на только для металлов, но и для их сплавов.
- Металлические сплавы обладают другими, нередко более полезными свойствами, чем составляющие их чистые металлы

- Кроме высоких механических качеств, сплавам присущи свойства, которых нет у чистых металлов.
- Нержавеющая сталь обладает высокой коррозийной стойкостью и жаропрочностью.
- На основе вольфрама, молибдена, титана и др. металлов стали создавать устойчивые к коррозии, сверхтвердые и тугоплавкие сплавы.
- В ядерной и космической промышленности из сплава вольфрама и рения делают детали, выдерживающие температуру до 3000 градусов.
 - В медицине используют хирургические инструменты и имплантаты из сплавов тантала и платины.