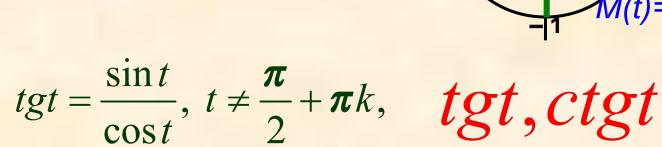
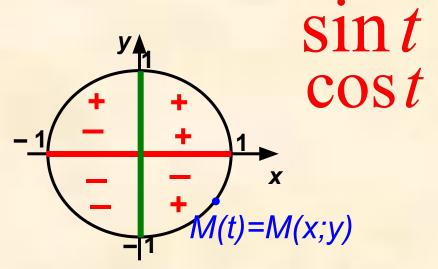


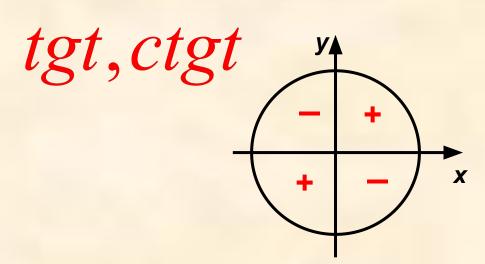
 $\chi = cost$

900igr.net

Числовая окружность




Синус, косинус, тангенс и котанзенс котанзенс наки по четвертям:


Если
$$M(t) = M(x; y)$$
, mo $x = \cos t$, $y = \sin t$

 $-1 \le \sin t \le 1 - 1 \le \cos t \le 1$

$$ctgt = \frac{\cos t}{\sin t}, \ t \neq \pi k,$$

Значения тригонометрических

	$\frac{\pi}{6}$ 30°	$\frac{\pi}{4}$ 45°	α 3 3	$\frac{1}{\pi}$ 90 $\frac{\pi}{2}$	$oldsymbol{\pi}^{180^{oldsymbol{ert}}}$	$\frac{3\pi}{2} 270^{\text{o}}$
sin	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1
cos	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0	-1	0
tg	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	_	0	_
ctg	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	_	0

Свойства синуса, косинуса, тангенса и

$$\cos(-t) = \cos t, \text{KOTAHFEHGA}(t + 2\pi k) = \sin t,$$

$$\sin(-t) = -\sin t, \qquad \cos(t + 2\pi k) = \cos t,$$

$$tg(-t) = -tgt, \qquad tg(t + \pi) = tgt,$$

$$ctg(-t) = -ctgt. \qquad ctg(t + \pi) = ctgt.$$

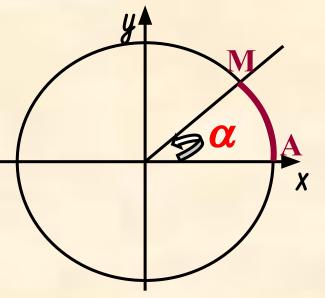
$$\sin(t + \pi) = -\sin t, \qquad \sin\left(t + \frac{\pi}{2}\right) = \cos t,$$

$$\cos(t + \pi) = -\cos t, \qquad \cos\left(t + \frac{\pi}{2}\right) = -\sin t$$

Основные

гіцьй тоном так жив формуль

$$\cos^2 t = 1 - \sin^2 t.$$


$$tgt = \frac{\sin t}{\cos t}, \ t \neq \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z}$$

$$ctgt = \frac{\cos t}{\sin t}, \ t \neq \pi k, \ k \in \mathbb{Z}$$

$$1 + tg^{2}t = \frac{1}{\cos^{2}t}, \ t \neq \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z}$$

$$1 + ctg^{2}t = \frac{1}{\sin^{2}t}, \ t \neq \pi k, \ k \in \mathbb{Z}$$

Связь между тригонометрическими функциями углового и числового аргумента

Длина дуги АМ – числовой аргумент, уголα – угловой аргумент.

$$\frac{\alpha}{360^{\circ}} = \frac{t}{2\pi}, \Longrightarrow$$

$$\Rightarrow t = \frac{\pi\alpha}{180^{\circ}}$$

$$\Rightarrow \alpha = \frac{180^{\circ}t}{\pi}$$

Угол в 1 рад – это центральный угол, длина дуги которого равна радиусу окружности.

Таким образом, в тригонометрии независимую переменную мы можем считать числовым аргументом или угловым аргументом.